
10

Partial Order Multiway Search

LU SHANGQI, Chinese University of Hong Kong, China

WIM MARTENS and MATTHIAS NIEWERTH, University of Bayreuth, Germany

YUFEI TAO, Chinese University of Hong Kong, China

Partial order multiway search (POMS) is a fundamental problem that finds applications in crowdsourcing, dis-

tributed file systems, software testing, and more. This problem involves an interaction between an algorithm

A and an oracle, conducted on a directed acyclic graph G known to both parties. Initially, the oracle selects a

vertex t inG called the target. Subsequently,A must identify the target vertex by probing reachability. In each

probe, A selects a set Q of vertices in G, the number of which is limited by a pre-agreed value k . The oracle

then reveals, for each vertex q ∈ Q , whether q can reach the target in G. The objective of A is to minimize

the number of probes. We propose an algorithm to solve POMS in O (log1+k n + d
k

log1+d n) probes, where n
represents the number of vertices in G, and d denotes the largest out-degree of the vertices in G. The probing

complexity is asymptotically optimal. Our study also explores two new POMS variants: The first one, named

taciturn POMS, is similar to classical POMS but assumes a weaker oracle, and the second one, named EM POMS,

is a direct extension of classical POMS to the external memory (EM) model. For both variants, we introduce

algorithms whose performance matches or nearly matches the corresponding theoretical lower bounds.

CCS Concepts: • Theory of computation → Graph algorithms analysis; Data structures design and

analysis;

Additional Key Words and Phrases: Partial order, graph algorithms, data structures, lower bounds

ACM Reference format:

Lu Shangqi, Wim Martens, Matthias Niewerth, and Yufei Tao. 2023. Partial Order Multiway Search. ACM

Trans. Datab. Syst. 48, 4, Article 10 (November 2023), 31 pages.

https://doi.org/10.1145/3626956

1 INTRODUCTION

Binary search admits the following interpretation from a graph’s perspective: We have a directed
path π of n vertices where an “oracle” has chosen a target vertex t . In each round, the search
algorithm picks a vertex q on π ; then the oracle reveals whether q can reach t . Similarly, the B-tree
[18] exemplifies the multiway version of the above process. In each round, the search algorithm

The research of Shangqi Lu and Yufei Tao was partially supported by GRF projects 14222822, 14203421, and 14207820

from HKRGC. The research of Wim Martens was partially supported by grants 369116833 and 431183758 of the Deutsche

Forschungsgemeinschaft (DFG).

Authors’ addresses: L. Shangqi and Y. Tao, Department of Computer Science and Engineering, The Chinese Uni-

versity of Hong Kong, Shatin, New Territories, Hong Kong; e-mails: {sqlu, taoyf}@cse.cuhk.edu.hk; W. Martens and

M. Niewerth, Angewandte Informatik 7, University of Bayreuth, 95447 Bayreuth, Germany; e-mails: {wim.martens,

matthias.niewerth}@uni-bayreuth.de.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0362-5915/2023/11-ART10 $15.00

https://doi.org/10.1145/3626956

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

https://orcid.org/0000-0002-7517-7252
https://orcid.org/0000-0001-9480-3522
https://orcid.org/0000-0003-2032-5374
https://orcid.org/0000-0003-3883-5452
https://doi.org/10.1145/3626956
mailto:permissions@acm.org
https://doi.org/10.1145/3626956
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626956&domain=pdf&date_stamp=2023-11-13

10:2 L. Shangqi et al.

picks a set Q of B ≥ 1 vertices from π ; then the oracle reveals which of those vertices can reach
t . In both cases, the algorithm seeks to discover t with the fewest rounds possible. Partial order

multiway search (POMS), which will be introduced shortly, extends these problems to arbitrary
partial orders. This article presents a formal investigation of several variants of POMS.

1.1 Problem Definitions: Three Versions of Partial Order Multiway Search

The Classical Version. POMS can be framed as an interaction between an oracle and an algorithm

A, both of which are given a single-rooted DAG G, i.e., G has a unique root (a vertex with in-degree
0) that has a path to every other vertex. The interaction begins with the oracle selecting a target

vertex t from G. Subsequently,A must determine which vertex is t by issuing (reachability) probes.
Specifically, in each probe:

—A chooses a set Q of vertices with |Q | ≤ k , where k is a problem parameter;
— the oracle then reveals, for each vertex q ∈ Q , whether q can reach t in G.

Let n be the number of vertices in G. It is evident thatA can always discover t with �n/k� probes
by inquiring the oracle about each vertex in G explicitly. The challenge lies in proving a better
bound on the number of probes.

Taciturn POMS. This POMS variant is also an interaction between an oracle and an algorithm

A. As before, the oracle first picks a target vertex t from a single-rooted DAG G, after which A
aims to find out which vertex is t with probing. To perform a probe, A still chooses a set Q of
vertices with |Q | ≤ k , where k is a problem parameter. However, the oracle returns only a binary
answer:

— yes, if at least one vertex in Q can reach t ;
— no, otherwise (i.e., none of the vertices in Q can reach t).

Compared to a traditional oracle, the oracle reveals less information (hence, the name “taciturn”).
The algorithmic challenge is again to minimize the number of probes.

POMS in External Memory. In the external memory (EM) model [3], a machine is equipped
with (i) a disk, which is an unbounded sequence of words divided into blocks of B ≥ 2 words, and (ii)
memory, which is a sequence of M words. The structure’s space is the number of blocks occupied.
An I/O operation reads a block of data from the disk to memory.1 The value of M is assumed to be
larger than B by a sufficiently large constant factor.2

In the EM POMS problem, we are permitted to preprocess a single-rooted DAG G into a disk-
resident structure. To start the interaction, the oracle (as in classical POMS) chooses a target t from
G. Then, an algorithm A performs a sequence of probes, each of which involves three steps:

(1) A reads a set Q of vertices from a disk block into memory.
(2) The oracle reveals the reachability (to t) for all the vertices in Q .
(3) A clears up memory to finish the probe.

Naively, A can store all the n vertices arbitrarily in �n/B� blocks and discover t with �n/B� I/Os.
The challenge is reduce the number of I/Os without increasing the space asymptotically.

1In general, the EM model also allows write I/Os, each of which overwrites a disk block using B words in memory. However,

we do not need to be concerned with such I/Os in this article.
2The strictest EM model [3] requires an algorithm to work even if M ≥ 2B . However, as shown in Reference [26], any

algorithm designed for M = μB for a constant μ > 2 can be adapted to work under M = 2B with only a constant blowup

in the number of I/O operations.

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

Partial Order Multiway Search 10:3

Fig. 1. POMS in image classification with crowdsourcing.

1.2 Motivation

Classical POMS. In the database area, a significant application of POMS is image classification with

crowdsourcing [39], where the objective is to assign an appropriate label from a concept ontology
to an image. As illustrated in Figure 1, an ontology is a DAG where each vertex is associated with
a concept. Furthermore, as we move down in the ontology, the concepts encountered are increas-
ingly specialized. This application highlights the power of a crowdsourcing system where human
beings are summoned to assist problem solving by answering (simple) questions with monetary
rewards. Every question has the form “is this an x?” where x is a concept. Receiving a negative
(respectively, positive) answer to the question “is this a vehicle?”, an algorithm can eliminate all
the concepts that are (respectively, are not) reachable from the vertex vehicle. The target t here is
the concept eventually returned (e.g., Sentra). As a crucial observation, although a human being
is not aware of t , s/he can still answer questions based on straightforward reasoning and, thereby,
play the role of oracle. As an example, when presented a car picture of the model Sentra, a person
will answer “yes” to “is this a vehicle?” no matter if s/he is aware of the concept Sentra in the
ontology. A crowdsourcing algorithm often asks k > 1 questions at a time to reduce interaction
rounds.

As pointed out in Reference [37], POMS also arises in distributed file systems. Suppose that
server A maintains a backup of its file system (usually a tree but can also be a DAG, e.g., in Unix)
in a remote server B. Periodically, the two servers need to synchronize their copies, which requires
identifying the folders whose content has changed since the last synchronization. If a folder has
an identical checksum at the two servers, then (with high probability) the folder and its subfolders
have incurred no changes. Based on this property, a POMS algorithm can find a modified folder
with small communication between the two servers.

The reader may refer to References [7, 37, 39] for more POMS applications in software testing,
relational databases, and workflow management.

Taciturn POMS. This POMS variant offers a more human-friendly way to implement crowdsourc-
ing algorithms. Consider the image classification scenario described earlier. Under classical POMS,
the amount of feedback solicited from human beings can be excessive: Each probe requires a hu-
man to answer k questions, which means at least k mouse clicks on a crowdsourcing platform.
This task can become rather tedious when k is large, potentially discouraging human participa-
tion. Unfortunately, as will become evident later, the value of k cannot be too small to ensure a
limited number of probes. Taciturn POMS offers an appealing remedy to this issue. Regardless of
how large k is, a human only needs to provide a Boolean answer, which can be done with a single
click. Moreover, if any vertex in Q can reach t , then the human can directly answer yes and safely
disregard the other vertices in Q .

EM POMS. Making a “conventional” data structure—that is, an index designed for memory-
resident data—I/O-efficient is non-trivial, because one must consider the effects of reading and
writing in blocks. Ideally, we want a generic reduction that can convert an arbitrary in-memory

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

10:4 L. Shangqi et al.

structure to an EM version with excellent performance. However, designing such reductions is still
a major challenge today.

We observe that a solution to EM POMS offers a reduction applicable to a class of region-based

structures satisfying the following requirements:

— The structure is a single-rooted DAG G where each vertex has out-degree at most d (the
in-degree can be arbitrary).

— Each vertex u stores a region—denoted as regu —which is a subset of the search space Q and
can be described in O (1) words.

— All the leaves (i.e., vertices with an out-degree of 0) have disjoint regions whose union is Q.
— For each vertex u, its regu is the union of the regions of all the leaves reachable from u.
— A query selects an element q ∈ Q and returns the (only) leaf whose region covers q. For any

vertex u, whether q falls in regu can be decided in constant time.

In a region-based structure, a query can be modeled as an instance of EM POMS. Let t be the
leaf whose region contains the query element q. We may treat t as the target selected by the oracle.
Given the regu of a vertex u, we can play the oracle’s role by deciding whether u can reach t in
O (1) time: The answer is yes if and only if q ∈ regu . An algorithm A solving EM POMS implies
an EM version of the structure G as follows: In preprocessing, if A packs a set Q of vertices in
a disk block, then we store Q , as well as the regions of the vertices therein, in O (|Q |/B) = O (1)
disk blocks. In answering a query, if A reads the block on Q , then we read the corresponding
O (1) blocks to acquire all the information needed to resolve reachability (to t) for the vertices in
Q . This enables us to simulate the execution of A with asymptotically the same I/O cost. We will
demonstrate the reduction’s power by employing our solution to EM POMS to obtain an optimal
I/O-efficient index for the vertical ray shooting problem for free.

1.3 Related Work

A (deterministic) algorithm A for classical POMS can be modeled as a decision tree. Each node in
the tree is associated with a set Q of vertices. The set associated with the root represents the set
Q of vertices chosen by A to perform the first probe. Recall that, upon being given a probe with
set Q , the oracle must reveal, for each vertex q ∈ Q , whether q can reach the target vertex t . Since
each q may or may not reach t , there can be at most 2 |Q | different outcomes for the probe. For each
outcome, node Q has a child node in the tree, whose associated vertex set Q ′ represents the set of
vertices chosen by A to perform the next probe in that outcome’s situation. Specially, if Q ′ = ∅,
then the child is a leaf of the tree, indicating thatA has already found t . Thus, designing a POMS
algorithm amounts to finding such a decision tree.

To understand the POMS literature, it is important to distinguish between the instance-oriented

and class-oriented categories, because they have drastically different objectives.

Instance-oriented POMS. Consider any algorithm A for POMS. Given an input G, define
costk (A,G, t) as the cost of A on G when the target is t . We can measure the instance-oriented
quality of A by

maxcostinst
k (A,G) = max

t
costk (A,G, t),

namely, the largest cost over all possible t in G.
As explained earlier, the algorithm A can be modeled as a decision tree. As the number of pos-

sible decision trees is finite, the problem of computing an optimal decision tree—a.k.a. finding an
algorithm A∗ with the lowest maxcostinst

k
(A∗,G)—is decidable. In the instance-oriented category

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

Partial Order Multiway Search 10:5

of POMS, the main objective is to minimize the amount of time needed to discover an optimal
decision tree.

The task of computing an optimal decision tree is best understood when G is a tree and k = 1.
In that case, Ben-Asher et al. [7] were the first to show that this can be achieved in time polyno-
mial to the number n of vertices in G. Their work motivated a line of research looking for faster
solutions [19, 21, 27, 32–34, 37]. Amazingly, the task turned out to be solvable in O (n) time! This
was first stated by Mozes et al. [34]; later, Dereniowski [21] pointed out the problem’s equivalence
to another problem known as edge ranking, which had already been settled earlier inO (n) time by
Lam and Yue [33].

In contrast, it is NP-hard to compute an optimal decision tree on a DAG G even if k = 1. This
opens the door to studying how to compute a decision tree whose corresponding algorithm A
ensures a maxcostinst

k
(A,G) that is sufficiently close to maxcostinst

k
(A∗,G). To that end, Arkin et al.

[5] showed that, for any DAG G and k = 1, it is possible to compute in polynomial time a decision
tree corresponding to an algorithmA whose maxcostinst

k
(A,G) is higher than maxcostinst

k
(A∗,G)

by a factor of O (logn).3

We are not aware of any results for k > 1 even when G is a tree.

Class-oriented POMS. In the class-oriented POMS category, the focus shifts from the computabil-
ity of an algorithm’s decision tree to evaluating an algorithm’s performance across a class of single-
rooted DAGs. To explain, let C be an arbitrary set of single-rooted DAGs. The following metric
provides a way to measure the quality of an algorithm A with respect to the whole class C :

maxcostclass
k (A,C) = max

G∈C
maxcostinst

k (A,G).

This metric represents the largest cost that A incurs on any of the graphs in C . Define

minmaxcostk (C) = min
A

maxcostclass
k (A,C). (1)

This represents the lowest upper bound that any algorithm can place on its cost, regardless of the
input G ∈ C and the target t in G. The objective is to understand the function minmaxcostk (C)
for important classes C .

Define

G (n,d) = { single-rooted DAG G | G has n vertices and maximum out-degree d }, (2)

T (n,d) = {G ∈ G (n,d) | G is a tree}. (3)

Clearly, minmaxcostk (T (n,d)) ≤ minmaxcostk (G (n,d)).
Focusing on T (n,d) and k = 1, Ben-Asher and Farchi [6] showed that minmaxcost1 (T (n,d))

is Ω(d log1+d n) but O (d logn), leaving a gap of Θ(log(1 + d)) in between. Laber and Nogueira
[32] tightened the upper bound and proved that minmaxcost1 (T (n,d)) ∈ Θ(d log1+d n) (see also
References [22, 24] where the same result was derived). Regarding G (n,d) and arbitrary k ≥ 1,

Tao et al. [39] obtained minmaxcostk (G (n,d)) = Ω(d
k

log1+d n) and minmaxcostk (G (n,d)) =

O ((logn) (log1+k n) + d
k

log1+d n). In fact, the lower bound of Reference [39] holds even when re-
placing G (n,d) with T (n,d).

Remarks. Taciturn POMS and EM POMS, both introduced in this work, have not been studied
previously. Regarding other POMS variants, we note that instance-oriented POMS with k = 1 has
been studied under various other setups [2, 10–17, 20, 23, 28, 30, 31]. These setups differ in several

3A better approximation ratio O (log n/ log log n) was claimed in Reference [21] but unfortunately is not correct, as has

been confirmed by our personal communication with the author of Reference [21].

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

10:6 L. Shangqi et al.

aspects, such as: (i) whether the cost of a probe depends on the provided vertex, (ii) whether the
goal is to minimize the worst-case cost for a given t or the average cost over a distribution of t ,
and (iii) whether the oracle’s answer can be noisy.

1.4 Our Contributions

Classical POMS. Our first contribution is to settle class-oriented POMS optimally.

Theorem 1. For the POMS problem, let n represent the number of vertices in the input graph G
and d denote the maximum vertex out-degree in G. Both of the following statements are true:

— There is an algorithm that can find the target in O (log1+k n +
d
k

log1+d n) probes.

— Any POMS algorithm must perform Ω(log1+k n +
d
k

log1+d n) probes to find the target in the

worst case.

The theorem implies:

minmaxcostk (G (n,d)) = Θ

(
log1+k n +

d

k
log1+d n

)
. (4)

Our lower bound in the second bullet holds even if G comes from T (n,d). This reveals the some-
what unexpected fact that POMS on trees is as hard as on DAGs, or formally:

Corollary 2. minmaxcostk (T (n,d)) = Θ(minmaxcostk (G (n,d))).

We also deploy Theorem 1 to derive a new result for instance-oriented POMS:

Theorem 3. Consider any tree G ∈ T (n,d) and an arbitrary integer k ∈ [1,n]. Let A∗ be an

algorithm achieving the lowest maxcostinst
k

(A∗,G). We can compute in poly(n) time the decision tree

of an algorithm A satisfying

maxcostinst
k

(A,G)

maxcostinst
k

(A∗,G)
= O

(
logn

log(1 + k) + log logn

)
.

Note that the ratio in the Theorem 3 is no worse thanO (logn/ log logn). Furthermore, the ratio
is O (1) when k = Ω(nϵ) for any constant ϵ > 0.

Taciturn POMS. We establish the following for taciturn POMS:

Theorem 4. For the taciturn POMS problem, let n represent the number of vertices in the input

graph G and d denote the maximum vertex out-degree in G. Both of the following statements are

true:

— There is an algorithm that can find the target in O (logn · log(1 + k) + d
k

log1+d n) probes.

— Any algorithm must perform Ω(logn + d
k

log1+d n) probes to find the target in the worst case.

Our algorithm (the first bullet) is optimal up to anO (log(1+k)) factor. It is interesting to compare
the two POMS problems: classical vs. taciturn. A classical oracle reveals up to k bits of information
(i.e., one bit for each vertex inQ , encoding the vertex’s reachability to t), whereas a taciturn oracle
reveals only a single bit. Therefore, by trying to simulate a classical oracle with a taciturn oracle,
one is forced to do k (taciturn) probes in the worst case, regardless of the strategy. Therefore,
naively, one would expect a blow-up factor of k in the probing complexity. However, by comparing
Theorems 1 and 4, one can see that taciturn POMS demands more probes than classical POMS by
only a polylogarithmic factor.

EM POMS. We establish the following for EM POMS:

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

Partial Order Multiway Search 10:7

Table 1. Summary of the Previous and New Results

POMS ref. cost remark

classical [6] O (d logn) G is a tree and k = 1
classical [22, 24, 32] O (d log1+d n) G is a tree and k = 1

classical [39] O ((logn) (log1+k n) + d
k

log1+d n) any DAG G and any k

classical this article O (log1+k n +
d
k

log1+d n) any DAG G and any k
classical [6] Ω(d log1+d n) G is a tree and k = 1

classical [39] Ω(d
k

log1+d n) G is a tree and any k

classical this article Ω(log1+k n +
d
k

log1+d n) G is a tree and any k

taciturn this article O (logn · log(1 + k) + d
k

log1+d n) any DAG G and any k

taciturn this article Ω(logn + d
k

log1+d n) G is a tree and any k

EM this article O (logB n +
d
B

log1+d n) any DAG G, space O (n/B)

EM this article Ω(logB n +
d
B

log1+d n) G is a tree and regardless of space

Theorem 5. For the EM POMS problem, let n represent the number of vertices in the input graph

G and d denote the maximum vertex out-degree in G. Both of the following statements are true:

— There is a structure ofO (n/B) space that can discover the target inO (logB n +
d
B

log1+d n) I/Os.

— In the worst case, every structure must incur Ω(logB n +
d
B

log1+d n) I/Os to find the target,

regardless of the space usage.

Interestingly, our structure’s space and I/O complexities do not rely on the number of edges
in G. When d = O (B), our I/O cost becomes O (logB n). Combining Theorem 5 and the discus-
sion in Section 1.2 shows that any region-based structure with n vertices has an EM counterpart

that uses O (n/B) space and answers a query in O (logB n +
d
B

logd+1 n) I/Os! In Section 6.4, we
will employ our techniques to develop a simple, optimal, EM index for the vertical ray shooting
problem.

Empirical Evaluation for POMS. We present an empirical evaluation that examines the practi-
cal efficiency of our algorithm in Theorem 1, using the state-of-the-art [39] as a benchmark. The
results are promising: The proposed algorithm exhibited robust performance and consistently out-
performed the method of Reference [39] in all scenarios. Our evaluation also covers taciturn POMS,
but not EM POMS for which our contributions are theoretical in nature.

Remarks. Table 1 provides a summary of our results and offers comparisons to previous findings
where appropriate.

In this article, our discussion assumes that G is single-rooted; however, all the POMS definitions
can be extended to DAGs with multiple roots in a straightforward manner. In general, an algorithm
designed for single-rooted DAGs can be utilized to tackle multi-root DAGs as well. Consider, for
example, classical POMS. If G has ρ roots, then we can conceptually add a dummy root that has
an edge to each of the ρ original roots. This effectively creates a single-rooted DAG G′ where each
vertex has an out-degree at most max{ρ,d }, with d being the largest out-degree in G. It should
now be rudimentary to adapt a single-rooted algorithm to perform POMS on G′.

A preliminary version of this work appeared in Reference [1]. Besides an improved presentation
of the content in the conference version, the current article also introduces taciturn POMS as a new
problem, presents a systematic investigation of the problem, and features an experimental study
to confirm our algorithms’ usefulness in practice.

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

10:8 L. Shangqi et al.

2 PRELIMINARIES

Basic Concepts and Notations. Henceforth, every “tree”—unless otherwise stated—should be
understood as a rooted tree. The size of a tree T , denoted as |T |, is the number of nodes in T . The
notation u ∈ T (respectively, u � T) indicates that u is (respectively, is not) a node of T . The
notation parent (u) gives the parent node of u and is undefined if u is the root. The subtree of a
node u ∈ T—denoted as Tu —is the tree induced by the descendants of u in T ; the root of Tu is u.
We would like to remind the reader that a node is considered a descendant of itself (though not a
proper descendant); similarly, a node is an ancestor of itself (but not a proper ancestor).

Reserving G for the input graph of POMS, we will use symbol G when referring to a general
single-rooted DAG. A tree T is contained in G if every edge of T belongs to G. Given such a tree
T , the subgraph of G induced by the vertices in T is denoted as G[T]. Note that G[T] must be a
single-rooted DAG. If node u can reach node v in G, then we say that u can G-reach v .

Shielding. Given nodes u and v in a tree T , we define Tu � {v} as:

—Tu if u = v ;
— what remains in Tu after removing Tv , otherwise.

Note that if v � Tu , then Tu � {v} = Tu ; furthermore, Tu � {v} always contains the root of Tu .
We will refer to � as the shield operator. Given a nodeu ∈ T and a set S = {v1,v2, . . . ,vx } where

vi ∈ T for each i ∈ [1,x], we define

Tu � S = ((...((Tu � {v1}) � {v2}) � ...) � {vx }).

Note that Tu � S is always a non-empty tree, because it always contains u.

Heavy-path Depth First Search Tree. Consider a depth first search (DFS) on a single-rooted
DAG G starting from its root. Recall that DFS uses a stack to manage the vertices that have been
discovered but may still have undiscovered out-neighbors. Vertices are assigned three colors: white

(never in stack), gray (in stack), and black (already popped out). At each step, the traditional DFS
would process an arbitrary white out-neighbor v of the vertex utop that currently tops the stack.
The heavy path depth first search (HPDFS), however, processes the white out-neighborvbest of
utop that is able to G-reach the most white vertices via white paths.4

HPDFS defines a tree T—the HPDFS-tree [39]—where a node u parents another v if the latter is
discovered while the former tops the stack. It also determines a total order ≺ on the vertices in G:
We define u ≺ v—read as “u is smaller than v” or “v is larger than u”—if u enters the stack before
v . For two sibling nodes u and v in T such that u ≺ v , we call u a left sibling of v and, conversely,
v a right sibling of u.

Appendix A proves the following properties of T :

Lemma 6. Let T be an HPDFS-tree of a single-rooted DAG G.

— (Order property) If u is a left sibling of v in T , then u ′ ≺ v ′ for every u ′ ∈ Tu and v ′ ∈ Tv .

— (No-cross-reachability property) If u ≺ v and v � Tu , then u cannot G-reach v ′ for any

v ′ ∈ Tv .

— (Path-descendants property) Ifw ∈ Tu , then for every nodev that lies on at least oneu-to-w
path in G, we have v ∈ Tu .

— (Subtree-size property) If u is a left sibling of v in T , then |Tu | ≥ |Tv |.

4A white path is a path including only white vertices. If two or more nodes satisfy this condition, then vbest can be any of

them.

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

Partial Order Multiway Search 10:9

Fig. 2. A running example. G is the graph represented by both the solid and dashed edges. An HPDFS T of

G is indicated by the solid edges. The labels on the nodes are consistent with the total order ≺. The black

nodes constitute the 8-separator Σ = {a, d, e, j, n, p} ofT . The nodes of LFU(Σ) = {b, d, h, i} are shown using

concentric circles.

Example. Consider G as the graph that has all the solid and dashed edges in Figure 2. The tree in
solid edges represents an HPDFS-tree T of G. The alphabetic order of the node labels reflects the
total order ≺ (the labels on some nodes are omitted). Because node b precedes h in ≺ and h � Tb,
the no-cross-reachability property assures us that b cannotG-reach any node inTh. Because k ∈ Th,
the path-descendants property asserts that every path from h to k in G can contain only nodes in
Th. The other two properties are easy to understand.

3 NEW RESULTS IN GRAPH THEORY

In this section, our discussion will be purely graph theoretic and will revolve around a single-
rooted DAGG with n nodes, an arbitrary HPDFS-treeT ofG, and an ordering ≺ on the vertices of
G determined by T . The core of the discussion is:

Path Preservation: Given a target vertex t inG, how to find a vertexu—which is neither
t nor the root of G—such that every u-to-t path in G is preserved in G[Tu]?

Recall that G[Tu] is the subgraph of G induced by the vertices in the subtree of u in T . It is worth
emphasizing that G[Tu] must contain all the edges of every u-to-t path in G. Our main finding is
that such a vertex u can always be found from a small collection of vertices in G, unless the same
collection already contains t .

Next, we will need to prove several fundamental properties in Sections 3.1–3.3 before presenting
our findings in Section 3.4.

3.1 Separators

It is well known that each treeT must contain a node whose removal disconnectsT into trees each
having at most n/2 nodes (see Reference [29] for a proof). We now prove a more general fact.

Lemma 7. LetT be an HPDFS-tree of a single-rooted DAG with n vertices. For every λ ∈ [2,n], there

is a set S of at most λ−1 nodes whose removal disconnectsT into trees each having at most n/λ nodes.

Proof. We can find such a set S using the algorithm below:

construct-separator

1. S ← ∅; T ′ ← T
2. while |T ′ | ≥ n/λ� + 1 do

3. u ← the smallest node (under ≺) in T ′ s.t. |T ′u | ≥ n/λ� + 1 but
|T ′v | ≤ n/λ� for each child v of u /* remark: u definitely exists */

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

10:10 L. Shangqi et al.

Fig. 3. The left flank of u is the set of white nodes.

4. add u to S ; remove T ′u from T ′

5. return S

It is easy to verify that the removal of S disconnectsT into trees each having at most n/λ nodes.
It remains to show that |S | ≤ λ − 1. Every time we add a node into S at Line 4, n/λ� + 1 > n/λ
nodes are removed from T ′. If |S | ≥ λ, then the total number of nodes removed would be strictly

larger than |S | · n/λ ≥ λ · n/λ = n, giving a contradiction. �

We define the λ-separator of T to be a set Σ determined as follows:

— if the output S of construct-separator contains the root of T , then Σ = S ;
— otherwise, Σ = S ∪ {root of T }.

It holds by Lemma 7 that |Σ| ≤ λ.

Example. Assume that T is the tree in solid edges as shown in Figure 2 (T has 36 nodes). The
8-separator of T is Σ = {a, d, e, j, n, p}; the above algorithm finds the nodes of Σ in the order
d, e, j, n, p, and a. Figure 2 colors all the nodes of Σ in black.

3.2 Left Flanks, Left Flank Unions, and Grand Unions

Fix an arbitrary node u ∈ T and consider the root-to-u path π in T . We define the left flank of
u—denoted as LF(u)—as the set of left siblings of the nodes on π . See Figure 3 for an illustration.

Let Σ be the λ-separator of T . The left-flank union (LFU) of Σ is

LFU(Σ) =
⋃
u ∈Σ

LF(u),

and the grand union (GU) of Σ is

GU(Σ) = Σ ∪ LFU(Σ). (5)

Example. Consider again the graph G in Figure 2 with λ = 8. As explained before, Σ =

{a, d, e, j, n, p}. The left flank of node p is LF(p) = {b, h}, while LF(n) = {b, i}. It is easy to ver-
ify that LFU(Σ) = {b, d, h, i} and GU(Σ) = {a, b, d, e, h, i, j, n, p}.

Next, we will prove several properties of the above concepts.

Lemma 8. For every node u ∈ Σ and node v ∈ LF(u), the tree Tv has at least one node in Σ \ {u}.

Proof. By definition of left flank, node v must have a right sibling v ′ on the root-to-u path in
T and this node v ′ must be an ancestor of u. By construction of Σ using the method construct-

separator (Section 3.1), we must have |Tu | ≥ n/λ� + 1, implying |Tv ′ | ≥ n/λ� + 1, which in turn
yields |Tv | ≥ n/λ� +1 (subtree-size property of Lemma 6). As the removal of Σ disconnectsT into
trees each having at most n/λ nodes, Tv must contain at least one node in Σ, which cannot be u
(because v ′ is a right sibling of v and also an ancestor of u). �

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

Partial Order Multiway Search 10:11

Corollary 9. For every node v ∈ LFU(Σ), the tree Tv contains at least one node in Σ.

Proof. The factv ∈ LFU(Σ) means thatv ∈ LF(u) for some u ∈ Σ. The claim then follows from
Lemma 8. �

Lemma 10. |LFU(Σ) | ≤ |Σ| − 1 and |GU(Σ) | < 2λ.

Proof. We will prove only |LFU(Σ) | ≤ |Σ| − 1, because |GU(Σ) | < 2λ will then follow immedi-
ately from Equation (5) and Lemma 7.

Define P as the set of edges e in T such that e is on the root-to-u path for at least one u ∈ Σ.
Denote byT P the subgraph ofT induced by P ; note thatT P is a tree. Consider any nodev ∈ LFU(Σ).
By definition of LFU(Σ), we have that v ∈ LF(u) for some u ∈ Σ. Therefore, Tv contains at least
one node in Σ (Lemma 8) and v ∈ T P . In other words, all the nodes in LFU(Σ) are in T P .

RootT P at the root ofT . Let I be the set of internal nodes inT P that have two or more child nodes
in T P . For each u ∈ I , denote by cu the number of its child nodes in T P . Every node v ∈ LFU(Σ)
satisfies:

(i) some node w in T P is a right sibling of v in T (by definition of left-flank unions), and
(ii) parent (v) ∈ I (because both v and w are in T P).

This implies that each u ∈ I has at most cu − 1 child nodes in LFU(Σ) (note that the largest child
of u in T P cannot be in LFU(Σ)). This yields |LFU(Σ) | ≤ ∑

u ∈I (cu − 1).
It remains to prove that

∑
u ∈I (cu − 1) ≤ |Σ| − 1. Denote by x the number of leaves in T P and

by y the number of internal nodes inT P that have only one child inT P . By definition ofT P , every
leaf node of T P must belong to Σ; hence, x ≤ |Σ|.

Now, let us view T P as an undirected tree. Under this view, we have:

degree sum of all vertices in (the undirected) T P = 2 · number of edges in T P

⇒ x + 2y + ��
∑
u ∈I

(cu + 1)�� − 1 = 2 · (|I | + x + y − 1)

(note: the “−1” is for the root of T P)

⇒
∑
u ∈I

(cu − 1) = x − 1 ≤ |Σ| − 1.

�

Lemma 11. If node u can G-reach node v , then v ∈ Tu∗ , where u∗ is the smallest node (under ≺) in

LF(u) ∪ {u} able to G-reach v .

Proof. We first show that v ∈ Tu∗ for some node u∗ ∈ LF(u) ∪ {u}. Let π be the root-to-u path
in T and p be the lowest ancestor of u such that v ∈ Tp . If p = u, then we have found a node
u∗ = u ∈ LF(u) ∪ {u} satisfying v ∈ Tu∗ . Consider now p � u. Definew as the child of p on π (note:
w can be u); hence, v � Tw by definition of p. Since p � v (otherwise, v can G-reach u and, thus,G
has a cycle), p must have a child u∗ such that v ∈ Tu∗ . We now argue that u∗ is a left sibling of w
and, hence, belongs to LF(u). First observe that w can G-reach v , because u can G-reach v and w
is an ancestor of u. Therefore, if u∗ would be a right sibling of w , then the nodes w and u∗ cause
a violation of the no-cross-reachability property of Lemma 6: w can G-reach a node (i.e., v) in Tu∗ .
Moreover, we have that u∗ � w , because v ∈ Tu∗ and v � Tw . It thus follows that u∗ must be a left
sibling of w .

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

10:12 L. Shangqi et al.

Fig. 4. S is the set of black vertices. The star of S for t is s∗.

As the nodes in LF(u) ∪ {u} are not ancestors of each other, there is a unique nodeu∗ ∈ LF(u) ∪
{u} satisfying v ∈ Tu∗ . By the no-cross-reachability property, no w ′ ∈ LF(u) ∪ {u} with w ′ ≺ u∗

can G-reach v . Hence, u∗ is the smallest node in LF(u) ∪ {u} that can G-reach v , as claimed. �

3.3 Stars

Next, we introduce star, another concept crucial to our technical development. Let S be a non-
empty set of vertices inG that includes the root ofG. For any vertex t inG, the star of S for t is the
smallest (under ≺) node s∗ ∈ S satisfying:

— (Condition C1) s∗ can G-reach t ;
— (Condition C2) no other node s ∈ S satisfies (i) s ∈ Ts∗ and (ii) s can G-reach t .

See Figure 4 for an illustration. Note that the root’s presence in S guarantees the existence of s∗.

Example. Consider Figure 2 with t = k and S = {a, b, h, l, m, p}. The star s∗ of S for t is h.

The next two lemmas present some properties of the star.

Lemma 12. Let S be a set of vertices in G. For every u ∈ S , the star of S for u must be u itself.

Proof. This is due to three facts: (i) no proper descendant of u in T can G-reach u (otherwise,
there would be a cycle), (ii) no proper ancestor of u can be the star of S for u, because u can G-
reach itself, and (iii) if a node v is smaller than u (under ≺) but not an ancestor of u, then v cannot
G-reach u (no-cross-reachability property of Lemma 6). �

Lemma 13. Let Σ be a λ-separator ofT where λ can be any value at least 2. If node u is a child node

of some node in Σ but u � GU(Σ), then parent (u) is the star of GU(Σ) for u.

Proof. The claim will follow from the definition of star, provided that we can show:

— If a node v ∈ GU(Σ) satisfies v ≺ parent (u) and parent (u) � Tv , then v cannot G-reach u.
— If a node v ∈ GU(Σ) satisfies v ∈ Tparent (u) and v � parent (u), then v cannot G-reach u.

The first bullet is a direct corollary of the no-cross-reachability property (Lemma 6). Next, we focus
on the second bullet.

Suppose that some node v as defined in the second bullet can G-reach u. We observe:

—v cannot be a descendant (in T) of any left sibling of u (otherwise, the left sibling of u can
G-reach u through v , violating the no-cross-reachability property);

—v � u (because v ∈ GU(Σ) yet u � GU(Σ));
—v cannot be a proper descendant of u in T (otherwise, there is a cycle).

Thus, there must exist a right sibling u ′ of u satisfying v ∈ Tu′ .

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

Partial Order Multiway Search 10:13

We argue thatTv must contain at least one node in Σ. This is obviously true ifv ∈ Σ. If, however,
v � Σ, then the fact v ∈ GU(Σ) tells us that v ∈ LF(w) for some w ∈ Σ. In that case, by Lemma 8,
Tv must have at least one node in Σ \ {w }.

Because Tv has a node in Σ and v ∈ Tu′ , it follows that Tu′ also has a node—denoted as w—in
Σ. But this means that u (being a left sibling of u ′) belongs to LF(w) and, hence, also belongs to
LFU(Σ), contradicting that u � GU(Σ). �

3.4 Path Preservation Lemmas

Recall that the core of our discussion in this section is path preservation, which, as explained
before, is to find a vertex u—which is neither t nor the root of G—such that every u-to-t path in
G is preserved in G[Tu]. Next, we will prove that such a vertex u can always be identified from a
small collection of vertices inG, unless the collection already contains the target t . We will present
our findings in three lemmas, which are useful in different scenarios. These lemmas demonstrate
the importance of all the concepts introduced earlier: separator, left flanks, grand unions, and stars.

Lemma 14 (Path Preservation Using a Root-Containing Set). Let t be a vertex inG, let S be

a set of vertices inG including the root, and let s∗ be the star of S for t . Suppose that t ∈ Ts∗ yet t � s∗.
If s# is the smallest child of s∗ in T that can G-reach t , then

— t ∈ Ts# ;

— every s#-to-t path in G is present in G[Ts# � S].

Proof. To prove the first bullet, notice that t � Tv for any left sibling v of s#; otherwise, s#

would not be the smallest child of s∗ that can G-reach t . However, t � Tv for any right sibling v
of s#; otherwise, s#, v , and t cause a violation of the no-cross-reachability property of Lemma 6.
Hence, t ∈ Ts# .

Next, we prove the second bullet. Consider an arbitrary s#-to-t path π inG. We argue that every
node u on π is inTs# �S . The second bullet will then follow, becauseG[Ts# �S] is a vertex-induced
subgraph of G. Because t ∈ Ts# , the path-descendants property of Lemma 6 indicates u ∈ Ts# . If
u � Ts# � S , then u must be “shielded” by S , namely, there is some node s ∈ S satisfying s � s#,
s ∈ Ts# , and u ∈ Ts . Given that u can G-reach t , node s must also be able to G-reach t . However,
s ∈ Ts# tells us that s ∈ Ts∗ ; thus, s∗ violates Condition C2 (Section 3.3) in the definition of star,
giving a contradiction. �

Example. Consider Figure 2 with t = k and S = {a, b, h, l, m, p}. As mentioned, the star s∗ of S for t
is h. Both child nodes of h (i.e., i and n) canG-reach t = k. Hence, s# = i.Ts# �S—the tree obtained
by “shielding”Ti with S—consists of the edges inTj plus the edge (i, j). Note that i has two paths
to k in G, both of which are preserved in G[Ts# � S].

Lemma 15 (Path Preservation Using a Left Flank). Let t be a vertex in G, let Σ be the k-

separator of T , and let s∗ be the star of Σ for t . If s∗∗ is the smallest node in LF(s∗) ∪ {s∗} able to

G-reach t , then

— t ∈ Ts∗∗ ;

— every s∗∗-to-t path in G is present in G[Ts∗∗ � Σ].

Proof. As s∗ can G-reach t , the first bullet follows directly from Lemma 11.
Next, we prove the second bullet. Consider an arbitrary s∗∗-to-t path π inG. We argue that every

nodeu on π is inTs∗∗�Σ. The second bullet will then follow, becauseG[Ts∗∗�Σ] is a vertex-induced
subgraph of G. By the path-descendants property of Lemma 6, we must have u ∈ Ts∗∗ (recall that
we have shown t ∈ Ts∗∗). Ifu � Ts∗∗ �Σ, thenu must be “shielded” by Σ, namely, there is some node

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

10:14 L. Shangqi et al.

s ∈ Σ satisfying s � s∗∗, s ∈ Ts∗∗ , and u ∈ Ts . We must have s∗ � s∗∗; otherwise,Ts∗ has a node—i.e.,
s , which is different from s∗—in Σ able to G-reach t , violating Condition C2 (Section 3.3) in the
definition of star. Thus, s∗∗ ∈ LF(s∗) and therefore s∗∗ ≺ s∗. It follows that s ≺ s∗ (order property
of Lemma 6). Hence,Ts contains a node (namely, s itself) that is in Σ, canG-reach t , and is smaller
than s∗. This contradicts s∗ being the star of Σ for t . �

Example. Consider Figure 2 with λ = 8 and t = m. Recall that Σ = {a, d, e, j, n, p} and, hence,
s∗ = p. Thus, LF(s∗) ∪ {s∗} = {b, h, p}, giving s∗∗ = h. Ts∗∗ � Σ is a tree with four nodes: h, i, l, and
m. G has two h-to-m paths in G, both of which are preserved in G[Ts∗∗ � Σ].

Lemma 16 (Path Preservation Using a Grand Union). Let t be a vertex in G, let Σ be the

k-separator of T , and let s∗ be the star of GU(Σ) for t . Then

— t ∈ Ts∗ ;

— every s∗-to-t path in G is preserved in G[Ts∗ � GU(Σ)].

Proof. We first show LF(s∗) ⊆ LFU(Σ). This holds by definition if s∗ ∈ Σ. Consider now s∗ ∈
GU(Σ) \ Σ, which means s∗ ∈ LFU(Σ). By Corollary 9, Ts∗ contains at least one node u ∈ Σ; thus,
LF(s∗) ⊆ LF(u) ⊆ LFU(Σ).

Next, we prove the first bullet of Lemma 16. We claim that no nodes in LF(s∗) canG-reach t . To
understand why, note that every node in LF(s∗) is smaller than s∗, and LF(s∗) ⊆ LFU(Σ) ⊆ GU(Σ).
Thus, if some node in LF(s∗) canG-reach t , then s∗ cannot be the smallest node in GU(Σ) satisfying
Conditions C1 and C2 (Section 3.3), violating the definition of star. Equipped with the claim, we
can now obtain t ∈ Ts∗ from Lemma 11 (here, we applied the lemma by setting u = s∗ and v = t ,
noticing that the node u∗ in the lemma’s statement is also s∗).

To prove the second bullet, consider an arbitrary s∗-to-t path π in G. We argue that every node
u on π is in Ts∗ � GU(Σ). The second bullet will then follow, because G[Ts∗ � GU(Σ)] is a vertex-
induced subgraph of G. By the path-descendants property of Lemma 6, we have that u ∈ Ts∗ . If
u � Ts∗ � GU(Σ), then there must be some node s ∈ GU(Σ) satisfying s � s∗, s ∈ Ts∗ , and u ∈ Ts .
But this contradicts Condition C2 (Section 3) in the definition of star. �

Example. Consider Figure 2 with λ = 8. As explained in Section 3.2, GU(Σ) = {a, b, d, e, h, i, j, n, p}.
If t = f, then s∗ = b. The tree Tb � GU(Σ) has nodes b, c, f, and g. G has two b-to-f paths, both
preserved in G[Ts∗ � GU(Σ)].

4 CLASSICAL POMS

This section aims to establish the formal results mentioned in Section 1.4 for classical POMS. Specif-
ically, we will introduce a new POMS algorithm in Section 4.1 and analyze its probing cost in Sec-
tion 4.2. In Section 4.3, we will present a matching lower bound on the probing complexity, which
will complete the proofs of Theorem 1 and Corollary 2. Finally, Section 4.4 will prove Theorem 3.
Throughout our discussion, we will assume that k ≥ 2; for cases with k = 1, one can manually
increase k to 2 (i.e., simulate an oracle for k = 2 using the provided oracle of k = 1) and then apply
our techniques.

4.1 A POMS Algorithm

Our POMS algorithm works by shrinking the input graph G into smaller single-rooted DAGs
G1,G2, . . . ,Gh (for some h ≥ 1) where the last DAG Gh becomes small enough to be solvable
with a single probe.

Define G0 = G. The algorithm runs in iterations. The ith iteration takes as the input a single-
rooted DAG Gi−1 with ni−1 vertices and produces a single-rooted DAG Gi having four properties:

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

Partial Order Multiway Search 10:15

— (subgraph) Gi is a subgraph of Gi−1;
— (size reduction) Gi has ni ≤ ni−1/k vertices;
— (target containment) Gi contains the target t ;
— (path-preserving) if r is the root of Gi , then every r -to-t path in Gi−1 is present in Gi .

These properties ensure:

Lemma 17. For each vertex u in Gi , it holds that u can Gi -reach the target t if and only if u can

G-reach t .

Proof. As Gi is a subgraph of G, the “only-if direction” trivially holds. We will focus on the
“if direction.” In fact, we will prove a stronger claim: every u-to-t path in the original graph G is

preserved in Gi . As G0 = G, the claim is obvious for i = 0. Next, assuming the claim’s correctness
on i = j ≥ 0, we will prove the correctness for i = j + 1.

Consider an arbitrary u-to-t path π in the original graph G. As Gj+1 is single-rooted, the root
r of Gj+1 can Gj+1-reach u. Identify an arbitrary r -to-u path π ′ in Gj+1. By concatenating π ′ and
π , we obtain a path π ′′ from r to t in G. By the inductive assumption, π is preserved in Gj . The
path-preserving property assures us that π ′′must also exist in Gj+1. This means that π is preserved
in Gj+1, as claimed. �

Owing to the above guarantee, we can pretend as if Gi comes with a “dedicated oracle” respon-
sible for reachability probes on Gi . Specifically, when asked if a node u in Gi can reach t , the
Gi -oracle simply passes u and t to the original oracle and then relays the oracle’s answer back to
the algorithm.

Algorithm. Consider iteration i ≥ 1. If Gi−1 has ni−1 ≤ k vertices, then t can be found trivially
with one probe. Otherwise, we generate Gi in two phases.

Phase 1. Construct an HPDFS-tree T of Gi−1 and the k-separator Σ of T . Let ≺ be the total order
defined byT on the vertices of Gi−1. As |Σ| ≤ k (Section 3.1), with a single probe, we can obtain all
the vertices in Σ able to Gi−1-reach t (there must be at least one such vertex, because Σ includes
the root of Gi−1, which can definitely Gi−1-reach t). We can then identify the star s∗ of Σ for t
(Section 3.3). By Lemma 10, |LF(s∗) | ≤ |LFU(Σ) | ≤ k − 1. Thus, with another probe, we can figure
out which nodes in LF(s∗) ∪ {s∗} can Gi−1-reach t . Define s∗∗ to be the smallest (under ≺) among
those nodes.

Phase 2. It must hold that either s∗∗ � Σ or s∗∗ = s∗. Indeed, if s∗∗ ∈ Σ but s∗∗ � s∗, then s∗∗ ≺ s∗

and s∗ cannot be the smallest node satisfying Conditions C1 and C2 (Section 3.3).

If s∗∗ � Σ, then we finalize Gi to be Gi−1[Ts∗∗ � Σ]. Now consider s∗∗ = s∗. We aim to find the
smallest (under ≺) child s# of s∗ (in T) that can Gi−1-reach t . For this purpose, it suffices to probe
the reachability (to t) for the child nodes of s∗ in ascending order of ≺ (each probe includes k nodes,
except possibly the last probe) and stop as soon as encountering s#. If s# does not exist, then we
declare t = s∗ and finish the whole algorithm. Otherwise, we set Gi to Gi−1[Ts# � Σ]. Note that if
the algorithm does not finish in this iteration, then the graph Gi generated contains no vertices
in Σ.

Correctness. The lemma below ascertains our algorithm’s correctness.

Lemma 18. If the algorithm finishes in iteration i ≥ 1, then it correctly finds t = s∗. Otherwise, Gi

has the subgraph, size-reduction, target-containment, and path-preserving properties.

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

10:16 L. Shangqi et al.

Proof. The algorithm terminates in the ith iteration only when s∗∗ = s∗. In this case, the first
bullet of Lemma 15 indicates t ∈ Ts∗ . Hence, if none of the child nodes of s∗ can Gi−1-reach t (this
means none of them can G-reach t ; see Lemma 17), then t must be s∗.

Next, we consider that the algorithm does not terminate in the iteration. It is obvious that Gi is
a subgraph of Gi−1. Furthermore, Gi includes no vertices from Σ and, thus, can have at most ni−1/k
nodes (Lemma 7). Next, we prove the claim that Gi contains t and is path-preserving. If s∗∗ � Σ,
then the claim follows from Lemma 15. Otherwise, we must have s∗∗ = s∗, and the first bullet of
Lemma 15 assures us t ∈ Ts∗ . As the existence of s# indicates t � s∗, the claim now follows from
Lemma 14. �

4.2 Cost Analysis

In this subsection, we will show that our algorithm doesO (log1+k n+
d
k

log1+d n) probes, as claimed
in the first bullet of Theorem 1. Given Gi−1 (for i ≥ 1), the ith iteration of our algorithm either
finds t or outputs Gi . Suppose that the algorithm finds t at iteration h for some h ≥ 1.

Analysis of One Iteration. Consider the ith iteration where i ∈ [1,h−1]. LetT ,≺, s∗, s∗∗, and s# be
defined as in Section 4.1. Set ni−1 (respectively, ni) to the number of vertices in Gi−1 (respectively,
Gi). Define an integer xi as follows:

— if s∗∗ � s∗, then xi = 0;
— otherwise, xi equals how many child nodes of s∗ (in T) are smaller than s#.

The ith iteration issues at most

2 +
⌈xi + 1

k

⌉
(6)

queries (two queries in Phase 1 and the rest in Phase 2).

Lemma 19. For every i ∈ [1,h − 1]:

ni ≤
ni−1

max{k,xi + 1} . (7)

Proof. The factni ≤ ni−1/k has been proved in Lemma 18. Next, we will proveni ≤ ni−1/(xi+1).
This is obviously true if xi = 0. Consider now xi > 0. In this case, s# has xi left siblingsv satisfying
|Tv | ≥ |Ts# | (subtree-size property of Lemma 6). Hence, |Ts# | = (xi +1) |Ts# | / (xi +1) ≤ ni−1/(xi +1).
The lemma then follows from ni ≤ |Ts# |. �

Total Cost. Applying Equation (7) for each i ∈ [1,h − 1] yields

n∏h−1
i=1 max{k,xi + 1}

≥ nh−1 ≥ 1. (8)

Therefore, h = O (logk n). By Equation (6), the total cost of the algorithm is at most

1 +

h−1∑
i=1

(
2 +

⌈xi + 1

k

⌉)
≤ 1 +

h−1∑
i=1

(
3 +

1

k
+
xi

k

)
= O (logk n) +

1

k

h−1∑
i=1

xi . (9)

If d ≤ k , then xi ≤ d ≤ k ; hence, Equation (9) is bounded by O (logk n). Assuming d ≥ k + 1, the
rest of the proof will show

h−1∑
i=1

xi = O (d logd n + k logk n), (10)

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

Partial Order Multiway Search 10:17

which will yield the conclusion that our algorithm performs O (logk n +
d
k

logd n) probes in total
(the last, hth, iteration obviously performs O (d/k) probes).

Proof of Equation (10). The integers x1, . . . ,xh−1 satisfy 0 ≤ xi ≤ d − 1 and

h−1∏
i=1

max{k,xi + 1} ≤ n (11)

because of Equation (8). We will prove Equation (10) under the relaxation that x1, . . . ,xh are real
values (instead of integers) in [0,d − 1]. In such a case, the constraint (11) can be replaced by

h−1∏
i=1

(xi + 1) ≤ n (12)

by requiring xi ≥ k − 1, noticing that if xi < k − 1, then raising it to k − 1 always increases the

left-hand side of Equation (10). Thus, the goal now is to maximize
∑h−1

i=1 xi subject to Equation (12)
and xi ∈ [k − 1,d − 1].

Lemma 20. When
∑h−1

i=1 xi is maximized, at most one of x1, . . . ,xh−1 can be strictly larger than

k − 1 but strictly smaller than d − 1.

Proof. Suppose that there are distinct i1, i2 ∈ [1,h − 1] such that xi1 and xi2 are both strictly
larger than k − 1 but strictly smaller than d − 1. Without loss of generality, assume xi1 ≥ xi2 . Set
c = (xi1 + 1) (xi2 + 1). Clearly, k2 < c < d2. We can increase xi1 + xi2 as follows:

— if c > dk , then modify xi1 to d − 1 and xi2 to c/d − 1;
— otherwise, modify xi1 to c/k − 1 and xi2 to k − 1.

After the modification, xi1 = d − 1 or xi2 = k − 1; and no constraints are violated, because k − 1 ≤
xi2 ≤ xi1 ≤ d − 1 and (xi1 + 1) (xi2 + 1) = c . This contradicts the claim that the original x1, . . . ,xh−1

maximize
∑h−1

i=1 xi . �

Consider a set of x1, . . . ,xh−1 that maximizes
∑h−1

i=1 xi . Let y1 (or y2) be the number of variables
among x1, . . . ,xh−1 that are set to k − 1 (or d − 1, respectively). Because of Equation (12), we have
y2 = O (logd n); however, trivially, y1 ≤ h − 1. Hence:

h−1∑
i=1

xi ≤ y1 (k − 1) + (1 + y2) (d − 1) = O (hk + d logd n) = O (k logk n + d logd n).

4.3 A Lower Bound

Consider G as a tree with n vertices. We will show that

maxcostinst
k (A,G) = Ω(log1+k n) (13)

holds for any POMS algorithm A, where maxcostinst
k

(A,G) is defined in Section 1.3. This lower
bound applies to an arbitrary tree G with n vertices.

Consider a probe with a set Q of k ≥ 1 vertices q1,q2, . . . ,qk . The oracle returns an outcome

sequence a1,a2, . . . ,ak , where ai = 1 if qi can G-reach the target t or 0 otherwise. With Q fixed,
the outcome sequence solely depends on t .

Lemma 21. When G is a tree, there are at most k + 1 distinct output sequences for a specific Q , as

t ranges over all the vertices in G.

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

10:18 L. Shangqi et al.

Proof. We prove the lemma by induction on k . Obviously, a query under k = 1 has two out-
come sequences. Assuming that the lemma is true for k = z (for some z ≥ 1), next, we prove its
correctness for k = z + 1. As before, let the query sequenceQ be q1,q2, . . . ,qz+1. At least one node
in Q has the property that its subtree in G contains no other nodes in Q . Assume that qz+1 is such
a node (otherwise, rename the nodes in Q).

For each selection of t ∈ G, denote by a1 (t),a2 (t), . . . ,az+1 (t) the corresponding output se-
quence. If nodes t and t ′ both belong to the subtree of qz+1 (in G), then ai (t) = ai (t ′) for all
i ∈ [1, z]. This is true, because the subtree of qz+1 is either contained in that of qi (in which case
ai (t) = ai (t ′) = 1) or disjoint with that of qi (in which case ai (t) = ai (t ′) = 0).

Consider the set of all output sequences a1 (t),a2 (t), . . . ,az+1 (t) as t ranges over all the ver-
tices in G. Divide the set into Group 1 where az+1 (t) = 1 and Group 0 where az+1 (t) = 0. Our
earlier discussion implies that Group 1 has exactly one sequence. By the inductive assumption,
Group 0 has at most z + 1 sequences. We thus conclude that there are at most z + 2 distinct
a1 (t),a2 (t), . . . ,az+1 (t). �

We now prove Equation (13) with an information theoretic argument. By Lemma 21, each out-
come sequence can be encoded in O (log(k + 1)) bits. At least log2 n bits are needed to encode the

n possible targets t . Thus, Ω(
log n

log(1+k)) probes are needed for at least one t .

As mentioned in Section 1.3, it has been proved in Reference [39] that minmaxcostk (T (n,d)) =
Ω(d

k
log1+d n), where minmaxcost (.) is defined in Equation (1), and T (n,d) is defined in Equa-

tion (3). As the above argument holds for any tree with n vertices, we can now conclude that

minmaxcostk (T (n,d)) = Ω(log1+k n +
d
k

log1+d n). This proves the second bullet of Theorem 1
and also Corollary 2.

4.4 Discussion on Instance-oriented POMS

The above discussion focused on class-oriented POMS. This subsection will explain an implication
of our results on instance-oriented POMS (see Section 1.3) when the input graphs are trees.

Let G be an arbitrary tree with n vertices and maximum out-degree d . We will show that

maxcostinst
k (A,G) = Ω(log1+k n + d/k) (14)

holds for any POMS algorithm A. In Section 4.3, we have already proved maxcostinst
k

(A,G) =

Ω(log1+k n); see Equation (13). It remains to show that maxcostinst
k

(A,G) = Ω(1 + d/k). To do so,
identify an arbitrary node u in G with d child nodes v1,v2, . . . ,vd . Define S = {v1, . . . ,vd }. When
asked if a node q ∈ G can reach t , the oracle acts in the following manner until |S | = 1: (i) if q ∈ S ,
then return “no” and then remove q from S ; (ii) if q � S and q can reach u, then return “yes”; (iii)
otherwise, return no. When |S | drops to 1, the oracle finalizes t to the only node left in S . It is now
clear thatA must set q to at least d−1 distinct nodes throughout the execution, which necessitates
at least �(d − 1)/k� probes. This establishes the lower bound in Equation (14).

Our algorithmA in Theorem 1 ensures maxcostinst
k

(A,G) = O (log1+k n +
d
k

log1+d n), which is

greater than the right-hand side of Equation (14) by a multiplicative factor of O (
log n

log(1+k)+log log n
).

To see why, note that the factor is always bounded by O (log1+d n), which is O (
log n

log(1+k)+log log n
)

if d ≥ k log2 n

log2 (1+k) . If d ≤ k log2 n

log2 (1+k) , then the factor is O (
(d/k) log1+d

n

log1+k
n

) = O (d
k

log(1+k)
log(1+d)), which is

O (
log n

log(1+k)+log log n
). This completes the proof of Theorem 3.

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

Partial Order Multiway Search 10:19

5 TACITURN POMS

This section is dedicated to establishing the formal results outlined in Section 1.4 for taciturn POMS.
Specifically, an algorithm for solving taciturn POMS will be introduced in Section 4.1, followed by
an analysis of its probing cost in Section 4.2. In Section 4.3, we will present a matching lower bound
on the probing complexity, which will complete the proof of Theorem 4.

5.1 An Algorithm

We will simulate our classical-POMS algorithm in Section 4.1—referred to as POMS(k) henceforth—
under a taciturn oracle.

Recall that, given G0 = G, POMS(k) iteratively produces DAGs G1,G2, . . . ,Gh (for some h ≥ 1)
such that the number of vertices in Gi is at most 1/k of that in Gi−1, for i ∈ [1,h]. To solve the
taciturn POMS problem, we will simulate POMS(2), but using a taciturn oracle with parameter k .
To avoid confusion, we will use kold for the value of k in classical POMS (i.e., kold will be fixed to
2), while reserving k for taciturn POMS.

Next, we will explain how to implement the ith (1 ≤ i ≤ h) iteration of POMS(2), which takes
as the input Gi−1 and outputs Gi . If Gi−1 has at most kold = 2 vertices, then we use two taciturn
probes to find out which vertex is t . Otherwise, the iteration performs two phases. The following
discussion will clarify how each phase is implemented on a taciturn oracle:

Phase 1. POMS(2) starts by computing an HPDFST of Gi−1; let ≺ be the total order thatT defines
on the vertices of Gi−1. After finding the 2-separator Σ of T , POMS(2) looks for (i) s∗, the star of Σ
for t and (ii) s∗∗, the smallest node in LF(s∗) ∪ {s∗} able to Gi−1-reach t .

As |Σ| ≤ kold = 2, we can use O (1) taciturn probes to decide the vertices of Σ that can Gi−1-
reach t and, thereby, identify the star s∗ of Σ for t . Similarly, as LF(s∗) ≤ |LFU(Σ) | ≤ kold − 1 = 1
(Lemma 10), using another O (1) taciturn probes, we can identify s∗∗.

Phase 2. As explained in Section 4.1, either s∗∗ � Σ or s∗∗ = s∗. In the former case, the iteration
finishes by generatingGi = Gi−1[Ts∗∗�Σ]; no more probes are necessary. In the latter case, POMS(2)
finds the smallest (under ≺) child s# of s∗ (in T) that can Gi−1-reach t . If s# does not exist, then
POMS(2) returns t = s∗; otherwise, it generates Gi = Gi−1[Ts# � Σ].

Next, focusing on the case s∗∗ = s∗, we will explain how to use taciturn probes to find s# or de-
clare its non-existence. Suppose that s∗ hasy child nodes inT , which areu1,u2, . . . ,uy in ascending
order of ≺. Divide the ordered child list into �y/k� groups, such that group 1 contains the small-
est k child nodes, group 2 the next smallest k , and so on. Each group has exactly k nodes except
possibly the last group. Use taciturn probes to identify the smallest j such that group j contains at
least one node that can Gi−1-reach t . If j does not exist, then we conclude that there is no s#.

Now consider that j is has been obtained. Thus, s# must be the smallest node in group j that can
Gi−1-reach t . We can find s# with binary search as follows: Let S be the set of nodes in group j and
S1 be the set of the |S |/2� smallest nodes in S . Issue a taciturn probe with S1. If the probe returns
yes, then we recursively look for s# in S1; otherwise, we do so in S \S1. The process continues until
only one node is left. The binary search costs 1 + �log2 k� probes.

In summary, if s# does not exist, then Phase 2 issues �d/k� probes and terminates the whole
algorithm. Otherwise, the number of probes is � 1+x

k
� + 1 + �log2 k�, where x is the number of left

siblings of s#.

5.2 Cost Analysis

Suppose that our algorithm in the previous subsection finds t in the hth iteration. As analyzed in
Section 4.2, the value of h is O (logkold

n), which is O (logn).

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

10:20 L. Shangqi et al.

For each i ∈ [1,h − 1], define xi as in Section 4.2. Specifically, if s∗∗ � s∗, then xi = 0; otherwise,
xi is the number of left siblings of s#. As discussed in Section 5.1, the ith iteration performs

O
(
1 +

xi

k
+ logk

)

probes. Therefore, the total probing cost is at the order of

h∑
i=1

(
1 +

xi

k
+ logk

)
= O (logn · log(1 + k)) +

1

k

h∑
i=1

xi . (15)

The analysis of
∑h

i=1 xi is identical to that of Section 4.2. From Equation (10), we get

h∑
i=1

xi = O (d logd n + kold logkold
n) = O (d logd n + logn).

Plugging the above into Equation (15) shows that our total probing cost is O (logn · log(1 + k) +
d
k

log1+d n), as claimed in the first bullet of Theorem 4.

5.3 A Lower Bound

In this section, we will prove the lower bound in the second bullet of Theorem 4. As mentioned
in Section 4.3, it has been proved in Reference [39] that, for classical POMS, any algorithm must

perform Ω(d
k

log1+d n) probes in the worst case. The same lower bound must also apply to taciturn
POMS because one can utilize the oracle in classical POMS to simulate a taciturn oracle (return no
for taciturn POMS if and only if the traditional oracle replies no to every vertex in the probe).

Next, we establish another lower bound of Ω(logn) on the probing complexity of taciturn POMS.
Consider G to be a chain of n vertices (i.e., a rooted tree where every non-leaf vertex has an out-
degree 1). We observe that if we perform a taciturn probe with a setQ of vertices, then the probe’s
outcome is uniquely determined by only one vertex in Q : the one “highest” in the chain (that can
reach every other vertex in Q). Thus, we can as well limit the size of Q to 1, in which case a lower
bound of �log2 n� becomes obvious (this is the same as classical POMS with k = 1, and thus the
discussion in Section 4.3 applies).

Finally, we can obtain a lower bound Ω(logn + d
k

log1+d n) by merging our argument with that

of Reference [39] as follows: The hard input in Reference [39] (for proving Ω(d
k

log1+d n)) was
a perfect d-ary (d ≥ 2) tree with n vertices; denote such a tree as T1 (d,n). However, let T2 (n)
represent a chain with n vertices. Now, given valid parameters d and n forT1 (d,n), we construct a
tree T3 (d,n) as follows:

— The root r of T3 (d,n) has two child nodes.
— The left subtree of r is T1 (d,n), while its right subtree is T2 (n).

It is clear thatT3 (d,n) has 2n + 1 nodes and a maximum vertex out-degree of d . We argue that any

taciturn POMS algorithmA must perform Ω(logn + d
k

log1+d n) probes to find the target vertex t

in the worst case. Indeed, if log2 n ≤ d
k

log1+d n, then A needs Ω(d
k

log1+d n) probes to guarantee
finding t in T1 (d,n); otherwise, A needs Ω(logn) probes to guarantee finding t in T2 (n).

6 EM POMS

This section aims to establish the formal results outlined in Section 1.4 for EM POMS. To achieve
this, we will first design another algorithm for classical POMS in Section 6.1, which shares the
same performance guarantees as Theorem 1. However, this new algorithm possesses additional
properties not found in our algorithm from Section 4.1. These properties are crucial for designing a

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

Partial Order Multiway Search 10:21

structure for EM POMS, as demonstrated in Section 6.2. In Section 6.3, we will present a matching
lower bound on the probing complexity, completing the proof of Theorem 4. To showcase the
power of our techniques, Section 6.4 will utilize the theorem to develop a new optimal structure
for the vertical ray shooting problem.

6.1 Another Algorithm for Classical POMS

In this subsection, we revisit classical POMS and present another algorithm to achieve the probing
complexity in Theorem 1.

Algorithm. Our new POMS algorithm follows the same iterative framework in Section 4. The ith
iteration (i ≥ 1) finds t with one probe if Gi−1 has at most k vertices; otherwise, it produces Gi in
two phases but in a way different from Section 4.1.

Phase 1. Construct an HPDFS-tree T of Gi−1 (which determines a total order ≺) and find the k-
separator Σ ofT (Section 3.1). As |GU(Σ) | < 2k (Section 3.2), with at most two probes, we can find
the nodes in GU(Σ) capable of Gi−1-reaching t and, hence, the star s∗ of GU(Σ) for t .

Phase 2. If s∗ � Σ, then the iteration outputs Gi = Gi−1[Ts∗ � GU(Σ)]. Otherwise, we find the
smallest (under ≺) child s# of s∗ in T that can Gi−1-reach t . If s# exists, then the iteration outputs
Gi = Gi−1[Ts# � GU(Σ)]; if s# does not exist, then the algorithm finishes with t = s∗.

Correctness and Cost. By resorting to Lemmas 14 and 16 and adapting the cost analysis of our
first POMS algorithm, we prove in Appendix B:

Lemma 22. The above algorithm is correct and achieves the same guarantees as in Theorem 1.

New Properties. Let us concentrate on an arbitrary iteration—say, the ith (with i ≥ 1)—of the
algorithm. Denote by Gi−1 the iteration’s input, by T an HPDFS-tree of Gi−1, and by Σ the k-
separator ofT . The iteration’s execution is determined by Gi−1 and the target t (which must be in
Gi−1 due to the target-containment property). Define

OUT(Gi−1, t) =
⎧⎪⎨⎪⎩

an empty DAG if the iteration finds t

Gi otherwise.

Define further:

OUT(Gi−1) = {OUT(Gi−1,v) | v in Gi−1}.

Lemma 23. No two DAGs in OUT(Gi−1) share any common vertex.

Proof. Consider any two different non-empty DAGs G1 and G2 in OUT(Gi−1). Denote by r1

(respectively, r2) the root of G1 (respectively, G2). In other words, G1 = Gi−1[Tr1 � GU(Σ)] and
G2 = Gi−1[Tr2 � GU(Σ)], which implies r1 � r2. Next, we show that Tr1 � GU(Σ) and Tr2 � GU(Σ)
do not share any common vertex. Since these graphs are trees, the claim is true if r1 and r2 have
no ancestor-descendant relationship in T .

Assume, without loss of generality, that r1 is a proper ancestor of r2 in T . By the way our algo-
rithm runs, we must have either

— (Case 1) r2 ∈ GU(Σ) \ Σ or
— (Case 2) parent (r2) ∈ Σ.

Specifically, Case 1 can happen only if s∗ = r2, while Case 2 can happen only if s# = r2.
In Case 1,Tr1 �GU(Σ) is contained inTr1 � {r2}, which shares no vertices withTr2 . It thus follows

that Tr1 � GU(Σ) shares no vertices with Tr2 � GU(Σ).

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

10:22 L. Shangqi et al.

Consider now Case 2. In general, the Gi produced by iteration i cannot be rooted at a vertex in
Σ. To understand why, first note that Gi is rooted either at s∗ or s#. In the former case, we must
have s∗ � Σ. In the latter case, we must have s# � Σ: If s# ∈ Σ, then s# ∈ GU(Σ), which contradicts
that s∗ satisfies condition C2 (Section 3.3).

As the root Gi cannot be in Σ, we know r1 � Σ, which means that parent (r2) is a proper de-
scendant of r1 in T . Because parent (r2) ∈ Σ⊆GU(Σ), we have that Tr1 � GU(Σ) is contained
in Tr1 � {parent (r2)}. Furthermore, Tr1 � {parent (r2)} shares no vertices with Tparent (r2) , whereas
Tparent (r2) contains Tr2 � GU(Σ). Therefore, we can conclude that no common vertex can exist in
Tr1 � GU(Σ) and Tr2 � GU(Σ). �

Define the children set of Σ as

C = {node u ∈ T | u is a child of some node in Σ}.
We can bound the size of C as follows:

Lemma 24. |C| ≤ |Σ| + |OUT(Gi−1) |.

Proof. We will prove that, for each nodeu ∈ C\Σ, the set OUT(Gi−1) contains at least one DAG
rooted at u. Because each graph in OUT(Gi−1) is single-rooted, we have |C \ Σ| ≤ |OUT(Gi−1) |,
which yields |C| ≤ |Σ| + |OUT(Gi−1) |.

We will prove a more specific claim: When the target t equals u, OUT(Gi−1, t) must be a DAG

rooted at u. Let us start with the scenario where t = u ∈ LFU(Σ). By Lemma 12, u is the star of
GU(Σ) foru itself. Hence, Phase 1 of the algorithm returns s∗ = u. As s∗ = u � Σ, Phase 2 generates
Gi = Gi−1[Tu � GU(Σ)], which is rooted at u. Consider now the scenario where t = u � LFU(Σ).
This, together with the fact u ∈ C \ Σ, indicates u ∈ C \ GU(Σ). By Lemma 13, Phase 1 returns
s∗ = parent (u), which is in Σ (by definition of C). Phase 2 sets s# = u (no left sibling of u can Gi−1-
reach u, by the no-cross-reachability property of Lemma 6) and outputs Gi = Gi−1[Tu � GU(Σ)],
which is rooted at u. �

6.2 An EM Structure

To find the target t , our EM structure deploys the algorithmA of Lemma 22 by setting its parameter
k to the block size B. Specifically, we precompute all the probes that A can possibly perform. For
every probe, the structure stores the at most B vertices (requested by the probe) in O (1) blocks.
Thus, no matter which probeA needs to make,A can always load the corresponding vertices into
memory with O (1) I/Os. The main challenge is to argue that the space complexity is O (n/B). For
that purpose, we will create the structure recursively and leverage Lemmas 23 and 24 to obtain a
non-conventional recurrence on the space consumption, which will solve to O (n/B).

As mentioned, the output of the ith (i ≥ 1) iteration of A depends on Gi−1 and t . More specif-
ically, conditioned on each Gi−1, the ith iteration can have |OUT(Gi−1) | different outputs, as dis-
cussed in Section 6.1. We will create a structure POMS(Gi−1, i), which gives A all the informa-
tion needed to execute the iteration on Gi−1. The iteration either terminates or outputs a DAG
Gi ∈ OUT(Gi−1) for the (i + 1)-th iteration. This Gi will then be recursively handled by a structure
POMS(Gi , i + 1). The entry point to the whole recursion is POMS(G, 1) = POMS(G0, 1). Next, we
explain the details of POMS(Gi−1, i).

Structure POMS(Gi−1, i): When Gi−1 Is Large. Let us start from the scenario where Gi−1 has
more than B vertices. LetT be an HPDFS-tree of Gi−1 and Σ be the B-separator ofT . InO (1) blocks,
we store all the vertices GU(Σ) and encode their ancestor-descendant relationships in T (it is well
known that the ancestor-descendant relationships of x nodes in a tree can be encoded in O (x)
words). They will be referred to as the grand-union blocks. By reading these blocks into memory,

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

Partial Order Multiway Search 10:23

A can execute Phase 1 to decide, for each u ∈ GU(Σ), whether u can Gi−1-reach t . From that
information, A obtains the star s∗ of GU(Σ) for t .

Fix an arbitrary node u ∈ GU(Σ) \ Σ. If s∗ = u, then Phase 2 of the iteration generates Gi =

Gi−1[Ts∗�GU(Σ)] to be processed by iteration i+1. We build POMS(Gi , i+1) recursively and store a
pointer (i.e., a disk address) to POMS(Gi , i+1) atu inside the grand-union blocks of POMS(Gi−1, i).

Consider now an arbitrary nodeu ∈ Σ. If s∗ = u, then Phase 2 needs to identify the smallest child
s# of s∗ able to Gi−1-reach t or declare the absence of s#. For this purpose, we store the children
of u in ascending order of ≺ in consecutive blocks—call them the children blocks—which A reads
until either having found s# or having exhausted all the children of s∗. If s# is not found, then the
algorithm terminates with t = u. Otherwise, it should operate on Gi = Gi−1[Ts# � GU(Σ)] in the
next iteration. We build POMS(Gi , i + 1) recursively and store a pointer to POMS(Gi , i + 1) at s#

inside the children blocks. This completes the description of POMS(Gi−1, i).

Structure POMS(Gi−1, i): When Gi−1 Is Small. If Gi−1 has less than B vertices, then A finishes
with a single probe. The situation is slightly more complex in EM, because we do not have access
to the edges in Gi−1. Fortunately, we can overcome the barrier by resorting to an HPDFS-treeT of
Gi−1. Note that T has at most B nodes and, therefore, fits in O (1) blocks. To find t , we read those
blocks into memory, acquire their Gi−1-reachability to t from the oracle, and then identify the star
s∗ of the set of vertices in T for t . The no-cross-reachability property of Lemma 6 ensures s∗ = t .

I/O cost. The algorithm performs O (1) I/Os for every probe issued by the POMS algorithm of
Lemma 22. The overall I/O cost is thus O (logB n + (d/B) log1+d n).

Space. We make sure that all blocks, except possibly one, are full. This can be achieved by first
generating the sequence of words needed to represent the structure, then chopping the sequence
into blocks of size B, and finally making one more pass over the sequence to fix the pointers. Hence,
it suffices to analyze how many words are used by our structure. Let function f (n) be the number
of words necessary (in the worst case) when G has n vertices. Trivially, f (n) = O (n) when n ≤ B.
Next, we discuss the scenario n > B.

Let us focus on the structure POMS(G, 1), i.e., the entry structure of the whole recursion. The
number of words in the grand-union blocks is O (|GU(Σ) |) = O (|Σ|) (Lemma 3). Let C be the
children set (Section 6.1) of the B-separator Σ used in POMS(G, 1). The children blocks of all the
nodes in Σ useO (|C|) words in total. We still need to account for the space of the recursive structure
on every possible G1 ∈ OUT(G, 1). Denoting by |G1 | the number of vertices in G1, we have:

f (n) = O (1 + |Σ| + |C|) +
∑

G1∈OUT(G,1)

f (|G1 |)

= O (1 + |Σ| + |OUT(G, 1) |) +
∑

G1∈OUT(G,1)

f (|G1 |), (16)

where the last equality applied Lemma 24. The recurrence is constrained by

|Σ| +
∑

G1∈OUT(G,1)

|G1 | ≤ n,

because (i) Σ has no vertices in any G1 ∈ OUT(G, 1) and (ii) no two DAGs in OUT(G, 1) share any
common vertices (Lemma 23). Appendix C shows that the recurrence (16) gives f (n) = O (n).

This concludes the proof for the first bullet of Theorem 5.

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

10:24 L. Shangqi et al.

Fig. 5. A region-based structure on the VRS problem.

6.3 A Lower Bound

This subsection will prove the second bullet in Theorem 5. Fix a value of n and consider any DAG
G with n vertices. We claim that, in general, given an EM-POMS structure I that can find any
target t in F (B) I/Os, we can obtain a POMS algorithm A that finds t with at most F (k) probes. It
will then follow from the second bullet of Theorem 1 that F (B) = Ω(logB n + (d/B) log1+d n).

We designA as follows: First,A builds a structure I on G by setting B = k . Then,A interacts
with the oracle by emulating the algorithm of I. Specifically, whenever I performs an I/O to read
a set S of at most B vertices, A probes the oracle about the G-reachability (to t) of every vertex
in S . This way, A acquires as much information as I and, thus, will terminate after F (k) probes
(a.k.a. I/Os).

6.4 Application: A New EM Structure for Vertical Ray Shooting

In Section 1.2, we introduced the class of region-based data structures in the RAM model and pre-
sented a generic black-box reduction that converts any such structure into an I/O-efficient coun-
terpart. Numerous well-known indexes are region-based. The binary search tree serves as one
example, where a node’s region is an interval of the form [x ,y), with x and y being real values.
The quad-tree and the kd-tree are further examples, where a node’s region is a multidimensional
rectangle. Next, we will discuss another, more sophisticated, region-based structure that better
illustrates the strength of our black-box reduction.

The vertical ray shooting (VRS) problem is defined as follows: The input is a set S of disjoint
line segments in R2. Given a point q in R2, a query reports the first segment in S (if any) hit by
the upward ray emanating from q. Figure 5(a) shows an example where the query answer is s1.
The objective is to store S in a structure to answer all queries efficiently. This is a fundamental
problem with profound significance to database systems; see Reference [26] for its relevance to
point location queries and nearest neighbor search and Reference [8] for its relevance to temporal
databases.

For each segment s ∈ S , shoot upward and downward rays from each of its two endpoints. Each
ray stops as soon as hitting a segment in S and, accordingly, turns into a segment. These rays (some
have turned into segments) together with S form a planar subdivision of R2, which is called the
trapezoidal map on S . Figure 5(b) shows the trapezoidal map for the input in Figure 5(a). Answering
a query with some point q is identical to finding the trapezoid in the trapezoidal map covering q
(e.g., trapezoid IV in Figure 5(b)).

In Reference [35], Mulmuley introduced the idea of building a binary tree where (i) each internal
node stores either a segment in S or an endpoint of such a segment, and (ii) each leaf node stores
a trapezoid in the trapezoidal map. Given a point q, we can identify the trapezoid containing q by
traversing a root-to-leaf path. Figure 5(c) shows a binary tree for our example. Consider the point

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

Partial Order Multiway Search 10:25

q in Figure 5(a). At the root B, we navigate to the right child C , because q is on the right of B (by
x-coordinate). From nodeC , we descend to the left child s2, because q is on the left ofC . At node s2,
we check whether q is below or above s2; since the answer is “above,” we move to the right child
s1. At node s1, we go to the left child, because q is below s1. This takes us to the target trapezoid IV.

Each node u in the binary tree is implicitly associated with a region regu in R2. The root is
associated with the entire R2. Inductively, (i) if an internal node u stores a point p, then the region
of its left (respectively, right) child includes all the points in regu whose x-coordinates are smaller
(respectively, larger) than that of p; (ii) if an internal node u stores a segment s , then the region of
its left (right, respectively) child includes all the points in regu below (respectively, above) of s . In
Figure 5(d), we have divided trapezoid V into two parts such that the left (respectively, right) part
is the region of the leaf labeled as V (respectively, V) in Figure 5(c). It is then easy to verify that
the binary tree is indeed a region-based structure.

Binary trees satisfying Mulmuley’s description are not unique. Some can have Θ(n2) nodes
where n = |S |. In Reference [38], Seidel gave a randomized algorithm to produce a binary tree
of size O (n) in expectation. This proves the existence of at least one binary tree having O (n)
nodes. Theorem 5 immediately gives an EM structure of O (n/B) space that answers any query

in O (logB n +
d
B

logd+1 n) = O (logB n) I/Os, noticing that the parameter d is 2 (binary tree). The
algorithm of Reference [38] may yield a binary tree with a large height (even when the tree has
sizeO (n)). Seidel [38] gave a non-trivial analysis on how likely the height is small. In contrast, we
can take an any unbalanced binary tree with O (n) nodes and obtain an EM structure of O (logB n)
query cost.

In EM, the known VRS structures (see References [9, 26, 36] for a full literature review) achieving
O (n/B) space and O (logB n) query cost were obtained using the partial persistence [4, 26] and the
topology tree [9, 25] techniques. Our method is drastically different and conceptually neater.

7 EXPERIMENTS

This section presents an experimental evaluation of the proposed POMS algorithms. We will con-
centrate on traditional and taciturn POMS (our contribution to EM POMS, a generic transformation
for converting an in-memory structure to an external memory counterpart, is theoretical in nature).
The objectives of our empirical study are two-fold. First, we want to understand how competitive
our POMS algorithm is with regard to the state-of-the-art [39] in practical performance. Second,
we want to understand how many more probes one should expect from our taciturn algorithm
compared to classical POMS. After all, one motivation for taciturn POMS is to increase interaction
rounds (a.k.a. probes) in exchange for simplified human inputs.

Data. We deployed precisely the same datasets used in the experiments of Reference [39].

— Amazon: The input G is a tree with 29,240 vertices representing Amazon’s product hierarchy.

— ImageNet: The input G is a (non-tree) DAG with 27,714 vertices representing an annotation
ontology over a collection of images.

We refer the reader to Reference [39] for additional details of the two datasets, e.g., the semantics of
the vertices and edges in G, where the data can be downloaded, and how they were post-processed
from the original raw versions. Table 2 shows the out-degree statistics for each dataset. Here, we
define the level of a vertex u in G as the length (in number of edges) of a shortest path from the
root of G tou. The average/max out-degree at a level � is calculated from all the nodes in G at level
�. A leaf of G is a node with out-degree 0. The number of leaves is 24,329 and 21,427 for Amazon
and ImageNet, respectively.

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

10:26 L. Shangqi et al.

Table 2. Out-degree Statistics

(a) Amazon (b) ImageNet

level avg. out-degree max out-degree avg. out-degree max out-degree

0 84 84 8 8
1 11 225 83 402
2 4.6 90 3.4 173
3 2.4 49 2.2 357
4 0.97 78 1.4 304
5 0.33 27 0.87 123
6 0.17 14 0.71 87
7 0.13 14 0.59 31
8 0.11 2 0.54 24
9 0 0 0.48 54
10 − − 0.69 21
11 − − 0.44 12
12 − − 0 0

Competing Algorithms. Our evaluation examined three algorithms:

— POMS-ours: the POMS algorithm described in Section 4.1;
— TLL19: the state-of-the-art POMS algorithm in Reference [39];
— Taciturn: the taciturn algorithm described in Section 5.1.

The reader should bear in mind that, while POMS-ours and TLL19 use the same oracle, Taciturn
executes on a weaker oracle. The comparison between the first two algorithms demonstrates the
efficiency of two solutions to the same problem, whereas the comparison between Taciturn and
the rest demonstrates the effects of weakening the oracle’s power.

Workloads and Metrics. Given an input graph G, each target vertex t defines a problem instance.
We considered the instances defined by all the leaves of G and will refer to the collection of those
instances as a workload. In other words, for G = Amazon (respectively, ImageNet), a workload
contains 24,329 (respectively, 21,427) instances. Given an integer � ≥ 1, we use the term level-�
workload for the set of instances defined by all the level-� leaves of G. For each algorithm A (i.e.,
POMS-ours, TLL19, and Taciturn), we will report its

— average cost: how many probesA performs on average answering an instance in a workload;
— max cost: the largest cost A incurs answering an instance in a workload;
— level-average cost: given a level �, how many probes A performs on average answering an

instance in a level-� workload;
— level-max cost: given a level �, the largest cost A incurs answering an instance in a level-�

workload.

The workload design and the definitions of average cost and level-average cost are the same as in
Reference [39]. Max cost and level-max cost are new.

Results. In the first experiment, we inspected the average cost of each algorithm as the parameter
k grew from 1 to 10. Tables 3(a) and 3(b) present the results for Amazon and ImageNet, respectively.
For both datasets, POMS-ours outperformed TLL19 under all values of k . The performance gap be-
tween the two algorithms was quite significant for small k , but gradually narrowed as k increased.
Taciturn had the same cost as POMS-ours for k = 1, because the two algorithms behave exactly

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

Partial Order Multiway Search 10:27

Table 3. Average Cost vs. k

(a) Amazon (b) ImageNet

k POMS-ours TLL19 Taciturn POMS-ours TLL19 Taciturn
1 26 36 26 35 45 35
2 14 21 19 19 26 35
3 11 17 19 15 19 25
4 9.1 15 19 12 17 24
5 8.2 13 18 11 15 23
6 7.6 11 18 9.9 14 23
7 8.0 10 18 9.3 13 23
8 7.7 10 18 8.9 12 23
9 7.2 9.7 17 8.5 12 22
10 7.0 9.5 17 8.0 10 22

Table 4. Maximum Cost vs. k

(a) Amazon (b) ImageNet

k POMS-ours TLL19 Taciturn POMS-ours TLL19 Taciturn
1 228 236 228 402 412 402
2 115 121 116 201 209 203
3 76 82 79 136 141 138
4 58 64 61 102 107 105
5 47 52 51 82 87 87
6 40 44 43 69 74 73
7 35 38 39 60 65 64
8 31 34 35 52 57 58
9 27 30 33 47 52 55
10 25 28 31 42 45 52

the same at that value of k . As expected, Taciturn required more probes than POMS-ours at higher
values of k , but by a factor far less than k .

Recall that POMS-ours, TLL19, and Taciturn all have non-trivial worst-case guarantees. Thus,
it makes sense to compare them by max cost. Table 4 presents each algorithm’s max cost as a
function of k , obtained from the experiment of Table 3. In general, the max cost of each algorithm
is closely related to the maximum out-degree in the input graph G. The main observation here is
that employing a large k is highly effective in reducing the max cost. This phenomenon supports
the motivation behind taciturn POMS (i.e., large k values are important in reality).

The next experiment zoomed into specific levels and compared different algorithms by their
level-average cost. For that purpose, we set the parameter k to 5 (the median value in the ex-
periments of Tables 3 and 4) and ran all algorithms using level-� workloads for every possible �.
Tables 5(a) and 5(b) present the results as a function of � for Amazon and ImageNet, respectively. In
Table 5(b), the level number starts from 2, because no level-1 leaves exist in this dataset. Once again,
POMS-ours consistently outperformed TLL19 in all scenarios, and the ratio between the costs of
Taciturn and POMS-ours was far less than k . The reader can observe a clear correlation between
the level-average costs of each algorithm and the average out-degrees shown in Table 2.

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

10:28 L. Shangqi et al.

Table 5. Level-average Cost vs. Level (k = 5)

(a) Amazon (b) ImageNet

level POMS-ours TLL19 Taciturn POMS-ours TLL19 Taciturn
1 14 18 17 − − −
2 17 22 21 41 46 45
3 9.4 15 16 13 18 20
4 7.9 13 17 13 18 22
5 7.8 13 19 11 16 22
6 7.7 12 21 9.2 13 23
7 8.0 12 22 9.0 12 24
8 8.2 12 23 8.8 12 25
9 8.0 10 27 9.0 12 26
10 − − − 9.5 13 27
11 − − − 9.4 14 26
12 − − − 9.0 13 27

Table 6. Level-max Cost vs. Level (k = 5)

(a) Amazon (b) ImageNet

level POMS-ours TLL19 Taciturn POMS-ours TLL19 Taciturn
1 17 21 19 − − −
2 47 52 51 82 87 87
3 22 28 29 38 42 46
4 14 20 24 76 82 83
5 20 23 31 66 70 78
6 12 17 27 30 35 38
7 11 17 28 23 28 34
8 9.0 17 28 14 19 34
9 8.0 12 27 14 18 34
10 − − − 16 21 36
11 − − − 13 18 36
12 − − − 11 17 38

In Table 6, we report the level-max cost of each algorithm as a function of � in the experi-
ment of Table 5. An interesting observation here is that, for both datasets, the difference between
POMS-ours and TLL19 tended to be more significant at a deeper level �. We believe that this phe-
nomenon reflects the superiority of POMS-ours in having a lower probing complexity. Such supe-
riority manifests itself better when the target vertex is “buried” deep in the input graph.

8 CONCLUSIONS

Partial order multiway search (POMS) is a classical problem in computer science that has
been extensively studied. In this article, we settle the problem by presenting new upper and lower
bounds matching each other asymptotically. Central to the proposed algorithms is a suite of graph-
theoretic results, which revolve around several novel concepts introduced in this work: left flank,
grand union, and star. Our graph-theoretic lemmas provide new mathematic tools for reasoning
about reachability in a directed acyclic graph (DAG) and, we believe, are of independent inter-
est. We have also studied two non-trivial variants of classical POMS. The first one, called taciturn
POMS, aims to better understand how the power of the oracle of classical POMS affects the probing

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

Partial Order Multiway Search 10:29

complexity. The second one, called EM POMS, is at the core of a generic reduction that can con-
vert many in-memory data structures to their I/O-efficient counterparts in external memory. For
both variants, we present non-trivial upper bounds that match or nearly match the corresponding
lower bounds.

APPENDICES

A PROOF OF LEMMA 6

The following is known as the white path theorem of DFS:

Theorem 25 ([18]). For any nodes u and v , it holds that v ∈ Tu if and only if G has a white path

from u to v right before u enters the stack.

The theorem implies:

Corollary 26. Consider the moment when u is about to enter the stack; if (i) v is white and (ii)G
has no white path from u to v , then v enters the stack after u is popped. If in addition G has a white

path from u to u ′ at that moment, then u ′ ≺ v .

(Order property) As v � Tu , by Theorem 25, no white path exists from u to v when u enters
the stack; thus, v enters the stack after u is popped (Corollary 26, applying the fact that u ≺ v).
Furthermore, u ′ ∈ Tu indicates that u is in the stack when u ′ enters the stack. The two facts
together indicate u ′ ≺ v . However, v ′ ∈ Tv means that v ≺ v ′, which leads to u ′ ≺ v ′.

(No-cross-reachability property) Take an arbitrary v ′ ∈ Tv . When u enters the stack, node
v ′ must be white (by the order property, we have u ≺ v ′, which means that v ′ has never been
en-stacked at the moment). Assume thatG has a path π from u to v ′. Let v ′′ be the last non-white
node on π at the moment when u enters the stack (v ′′ must exist, because otherwise v ′ ∈ Tu by
Theorem 25, contradicting v ′ ∈ Tv). Hence, when v ′′ entered the stack, a white path existed from
v ′′ to v ′ but not from v ′′ to u (as mentioned, u canG-reach v ′′; hence, a path from v ′′ to u implies
a cycle in G, contradicting the fact that G is a DAG). By Corollary 26, we have v ′ ≺ u, which
contradicts the order property.

(Path-descendants property) Assume that π is a u-to-w path containing at least one node
outside Tu . When u enters the stack, some nodes on π must be non-white (Theorem 25); let v be
such a node on π closest to w . When v enters the stack, there must be a white path from v to w ;
by Theorem 25, w ∈ Tv . Because w ∈ Tu and v � Tu , v must be a proper ancestor of u in T . But
this means that G has a path from v to u, thereby creating a cycle, which contradicts the fact that
G is a DAG.

(Subtree-size property) This property immediately follows from the definition of HPDFS and
Theorem 25.

B PROOF OF LEMMA 22

To prove the algorithm’s correctness, it suffices to show that if the algorithm does not finish at
iteration i , then Gi has the size-reduction, target-containment, and path-preserving properties
described in Section 4.1 (the subgraph property is obvious).

— (size-reduction) As Gi includes no vertices from Σ, Gi can have at most ni−1/k nodes
(Lemma 7).

— (target-containment and path-preserving) If s∗ � Σ, then the two properties follow di-
rectly from Lemma 16. Now, consider s∗ ∈ Σ. By Lemma 16, t ∈ Ts∗ . Hence, if s# does not exist,
then s∗ = t and the algorithm finishes. Otherwise, by Lemma 14, Gi = Gi−1[Ts# � GU(Σ)]
contains t and is path-preserving.

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

10:30 L. Shangqi et al.

We can prove that the algorithm performs O (log1+k n +
d
k

log1+d n) probes by adapting the ar-
gument of Section 4.2 in a straightforward manner.

C SOLVING THE FUNCTION f (n) IN SECTION 6.2

We consider, w.l.o.g., that f (n) ≤ c1n for n ≤ B where c1 is a constant. Rewrite Equation (16) into:

f (n) ≤ c2 (1 + |Σ| + |OUT(G, 1) |) +
∑

G1∈OUT(G,1)

f (|G1 |) (17)

for some constant c2. Set c = max{c1, c2}. We will show f (n) ≤ 4cn − 3c . Assuming that this holds
for all n ≤ z − 1 where integer z satisfies z ≥ B + 1 ≥ 2, we will prove its correctness for n = z.

Consider any G with z vertices. If |OUT(G, 1) | = 0, then Equation (17) gives f (z) ≤ cz + c ,
which is at most 4cz − 3c as long as z ≥ 2. When |OUT(G, 1) | ≥ 1, we get from Equation (17):

f (z) ≤ c (1 + |Σ| + |OUT(G, 1) |) +
∑

G1∈OUT(G,1)

f (|G1 |)

≤ c (1 + |Σ| + |OUT(G, 1) |) +
∑

G1∈OUT(G,1)

(4c |G1 | − 3c)

= c − 2c |OUT(G, 1) | − 3c |Σ| + 4c ���|Σ| +
∑

G1∈OUT(G,1)

|G1 |�� .
Recall from Section 6.2 that |Σ| +∑

G1∈OUT(G,1) |G1 | ≤ n = z. Hence:

f (z) ≤ c − 2c |OUT(G, 1) | − 3c |Σ| + 4cz

≤ 4cz + c − 2c (|OUT(G, 1) | + |Σ|)
≤ 4cz + c − 4c,

where the last inequality used |Σ| ≥ 1 (the root of G is always in Σ) and |OUT(G, 1) | ≥ 1. Hence,
f (z) ≤ 4cz − 3c , which completes the proof.

REFERENCES

[1] Shangqi Lu, Wim Martens, Matthias Niewerth, and Yufei Tao. 2022. Optimal algorithms for multiway search on partial

orders. PODS 2022, 175–187.

[2] Micah Adler and Brent Heeringa. 2012. Approximating optimal binary decision trees. Algorithmica 62, 3–4 (2012),

1112–1121.

[3] Alok Aggarwal and Jeffrey Scott Vitter. 1988. The input/output complexity of sorting and related problems. Commun.

ACM 31, 9 (1988), 1116–1127.

[4] Lars Arge, Andrew Danner, and Sha-Mayn Teh. 2003. I/O-efficient point location using persistent B-trees. ACM J.

Experim. Algor. 8 (2003).

[5] Esther M. Arkin, Henk Meijer, Joseph S. B. Mitchell, David Rappaport, and Steven Skiena. 1998. Decision trees for

geometric models. Int. J. Comput. Geom. Applic. 8, 3 (1998), 343–364.

[6] Yosi Ben-Asher and Eitan Farchi. 1997. The Cost of Searching in General Trees versus Complete Binary Trees. Technical

Report. https://researcher.watson.ibm.com/researcher/view_person_pubs.php?person=il-FARCHI&t=1

[7] Yosi Ben-Asher, Eitan Farchi, and Ilan Newman. 1999. Optimal search in trees. SIAM J. Comput. 28, 6 (1999), 2090–2102.

[8] Elisa Bertino, Barbara Catania, and Boris Shidlovsky. 1998. Towards optimal indexing for segment databases. In Pro-

ceedings of the Conference on Extending Database Technology (EDBT’98). 39–53.

[9] Paul B. Callahan, Michael T. Goodrich, and Kumar Ramaiyer. 1995. Topology B-trees and their applications. In Pro-

ceedings of the Algorithms and Data Structures Workshop (WADS’95). 381–392.

[10] Renato Carmo, Jair Donadelli, Yoshiharu Kohayakawa, and Eduardo Sany Laber. 2004. Searching in random partially

ordered sets. Theor. Comput. Sci. 321, 1 (2004), 41–57.

[11] Venkatesan T. Chakaravarthy, Vinayaka Pandit, Sambuddha Roy, Pranjal Awasthi, and Mukesh K. Mohania. 2011.

Decision trees for entity identification: Approximation algorithms and hardness results. ACM Trans. Algor. 7, 2 (2011),

15:1–15:22.

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

https://researcher.watson.ibm.com/researcher/view_person_pubs.php?person=il-FARCHI&t=1

Partial Order Multiway Search 10:31

[12] Venkatesan T. Chakaravarthy, Vinayaka Pandit, Sambuddha Roy, and Yogish Sabharwal. 2009. Approximating de-

cision trees with multiway branches. In Proceedings of the International Colloquium on Automata, Languages and

Programming (ICALP’09). 210–221.

[13] Ferdinando Cicalese, Tobias Jacobs, Eduardo Sany Laber, and Marco Molinaro. 2010. On greedy algorithms for decision

trees. In Proceedings of the International Symposium on Algorithms and Computation (ISAAC’10). 206–217.

[14] Ferdinando Cicalese, Tobias Jacobs, Eduardo Sany Laber, and Marco Molinaro. 2011. On the complexity of searching

in trees and partially ordered structures. Theor. Comput. Sci. 412, 50 (2011), 6879–6896.

[15] Ferdinando Cicalese, Tobias Jacobs, Eduardo Sany Laber, and Marco Molinaro. 2014. Improved approximation algo-

rithms for the average-case tree searching problem. Algorithmica 68, 4 (2014), 1045–1074.

[16] Ferdinando Cicalese, Tobias Jacobs, Eduardo Sany Laber, and Caio Dias Valentim. 2012. The binary identification

problem for weighted trees. Theor. Comput. Sci. 459 (2012), 100–112.

[17] Ferdinando Cicalese, Balázs Keszegh, Bernard Lidický, Dömötör Pálvölgyi, and Tomás Valla. 2016. On the tree search

problem with non-uniform costs. Theor. Comput. Sci. 647 (2016), 22–32.

[18] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2001. Introduction to Algorithms, Second

Edition. The MIT Press.

[19] Pilar de la Torre, Raymond Greenlaw, and Alejandro A. Schäffer. 1995. Optimal edge ranking of trees in polynomial

time. Algorithmica 13, 6 (1995), 592–618.

[20] Dariusz Dereniowski. 2006. Edge ranking of weighted trees. Discr. Appl. Math. 154, 8 (2006), 1198–1209.

[21] Dariusz Dereniowski. 2008. Edge ranking and searching in partial orders. Discr. Appl. Math. 156, 13 (2008), 2493–2500.

[22] Dariusz Dereniowski and Marek Kubale. 2006. Efficient parallel query processing by graph ranking. Fundam. Inform.

69, 3 (2006), 273–285.

[23] Dariusz Dereniowski, Stefan Tiegel, Przemyslaw Uznanski, and Daniel Wolleb-Graf. 2019. A framework for searching

in graphs in the presence of errors. In Proceedings of the Symposium on Simplicity in Algorithms (SOSA), 4:1–4:17.

[24] Ehsan Emamjomeh-Zadeh, David Kempe, and Vikrant Singhal. 2016. Deterministic and probabilistic binary search in

graphs. In Proceedings of the ACM Symposium on Theory of Computing (STOC’16). 519–532.

[25] Greg N. Frederickson. 1997. Ambivalent data structures for dynamic 2-edge-connectivity and k smallest spanning

trees. SIAM J. Comput. 26, 2 (1997), 484–538.

[26] Xiaocheng Hu, Cheng Sheng, and Yufei Tao. 2019. Building an optimal point-location structure in O(sort(n)) I/Os.

Algorithmica 81, 5 (2019), 1921–1937.

[27] Ananth V. Iyer, H. Donald Ratliff, and Gopalakrishnan Vijayan. 1991. On an edge ranking problem of trees and graphs.

Discr. Appl. Math. 30, 1 (1991), 43–52.

[28] Tobias Jacobs, Ferdinando Cicalese, Eduardo Sany Laber, and Marco Molinaro. 2010. On the complexity of search-

ing in trees: Average-case minimization. In Proceedings of the International Colloquium on Automata, Languages and

Programming (ICALP’10). 527–539.

[29] Camille Jordan. 1869. Sur les assemblages de lignes. Journal für die reine und angewandte Mathematik 70 (1869),

185–190.

[30] S. Rao Kosaraju, Teresa M. Przytycka, and Ryan S. Borgstrom. 1999. On an optimal split tree problem. In Proceedings

of the Algorithms and Data Structures Workshop (WADS’99). 157–168.

[31] Eduardo Sany Laber and Marco Molinaro. 2011. An approximation algorithm for binary searching in trees. Algorith-

mica 59, 4 (2011), 601–620.

[32] Eduardo Sany Laber and Loana Tito Nogueira. 2001. Fast searching in trees. Electron. Notes Discr. Math. 7 (2001), 90–93.

[33] Tak Wah Lam and Fung Ling Yue. 2001. Optimal edge ranking of trees in linear time. Algorithmica 30, 1 (2001), 12–33.

[34] Shay Mozes, Krzysztof Onak, and Oren Weimann. 2008. Finding an optimal tree searching strategy in linear time. In

Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’08). 1096–1105.

[35] Ketan Mulmuley. 1990. A fast planar partition algorithm, I. J. Symb. Comput. 10, 3/4 (1990), 253–280.

[36] J. Ian Munro and Yakov Nekrich. 2019. Dynamic planar point location in external memory. In Proceedings of the

Symposium on Computational Geometry (SoCG), Vol. 129, 52:1–52:15.

[37] Krzysztof Onak and Pawel Parys. 2006. Generalization of binary search: Searching in trees and forest-like partial

orders. In Proceedings of the Annual IEEE Symposium on Foundations of Computer Science (FOCS’06). 379–388.

[38] Raimund Seidel. 2010. Reprint of: A simple and fast incremental randomized algorithm for computing trapezoidal

decompositions and for triangulating polygons. Comput. Geom. 43, 6–7 (2010), 556–564.

[39] Yufei Tao, Yuanbing Li, and Guoliang Li. 2019. Interactive graph search. In Proceedings of the ACM Management of

Data Conference (SIGMOD’19). 1393–1410.

Received 15 December 2022; revised 29 July 2023; accepted 14 September 2023

ACM Transactions on Database Systems, Vol. 48, No. 4, Article 10. Publication date: November 2023.

