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Approximate nearest neighbor (ANN) search in high-dimensional metric spaces is a fundamental problem with

many applications. Over the past decade, proximity graph (PG)-based indexes have demonstrated superior

empirical performance over alternatives. However, these methods often lack theoretical guarantees regarding

the quality of query results, especially in the worst-case scenarios. In this paper, we introduce the 𝛼-convergent
graph (𝛼-CG), a new PG structure that employs a new carefully designed edge pruning rule. If the distance
between the query point 𝑞 and its exact nearest neighbor 𝑣∗ is at most 𝜏 for some constant 𝜏 > 0, our 𝛼-CG

finds the exact nearest neighbor in poly-logarithmic time, assuming bounded intrinsic dimensionality for the

dataset; otherwise, it can find an ANN in the same time. To enhance scalability, we develop the 𝛼-convergent
neighborhood graph (𝛼-CNG), a practical variant that applies the pruning rule locally within each point’s

neighbors. We also introduce optimizations to reduce the index construction time. Experimental results show

that our 𝛼-CNG outperforms existing PGs on real-world datasets. For most datasets, 𝛼-CNG can reduce the

number of distance computations and search steps by over 15% and 45%, respectively, when compared with

the best-performing baseline.
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1 Introduction
Approximate nearest neighbor search is a fundamental component in various applications such

as image retrieval [42, 57], recommendation systems [11, 16], and data mining [32, 36]. Let 𝑃 be a

set of 𝑛 data points from a metric space (X, 𝛿) where X is a set of points and 𝛿 : X × X → R≥0

is a distance function. We want to construct a data structure on 𝑃 that supports the following

nearest neighbor (NN) query: given a query point 𝑞 ∈ X, return the point 𝑣∗ ∈ 𝑃 closest to 𝑞. Due to

the “curse of dimensionality", all known space-efficient solutions for NN search have search times

that grow exponentially with the dimensionality of the metric space. To enhance query efficiency,

researchers often resort to 𝑐-approximate nearest neighbor (ANN) queries for some constant 𝑐 > 1,
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Fig. 1. The edge pruning rules of existing MRNG, 𝜏-MG, Vamana, and 𝛼-CG. Given a data point 𝑝 , a candidate
𝑢 is pruned if 𝑝 already has an out-neighbor 𝑣 falling within the intersection of 𝐵(𝑝, 𝛿 (𝑝,𝑢)) and 𝐵(𝑢, 𝑟 ).

Table 1. Comparison of PG-based methods

Accuracy Guarantees Theoretical Properties

Method Pruning radius 𝛿 (𝑞, 𝑣∗) = 0 𝛿 (𝑞, 𝑣∗) < 𝜏 𝛿 (𝑞, 𝑣∗) > 𝜏 Routing Length Avg. Time Worst-case Time

MRNG [22] 𝑑 (𝑝,𝑢) Linear 𝑂 (𝑛 2

𝑚 ln𝑛) 𝑂 (𝑛)
𝜏-MG [56] 𝑑 (𝑝,𝑢) − 3𝜏 Linear 𝑂 (𝑛 1

𝑚 (ln𝑛)2) 𝑂 (𝑛)
Vamana [62]

1

𝛼
𝑑 (𝑝,𝑢) 𝑂 (log𝛼

Δ
(𝛼−1)𝜖 ) – 𝑂

(
𝛼𝑑 logΔ log

Δ
(𝛼−1)𝜖

)
𝛼-CG (Ours) 1

𝛼
𝑑 (𝑝,𝑢) − (𝛼 + 1)𝜏 𝑂 (log𝛼 Δ)† – 𝑂

(
(𝛼𝜏)𝑑 logΔ log𝛼 Δ

)†
: exact guarantee; :

(
𝛼+1

𝛼−1
+ 𝜖

)
-ANN; : no guarantee; 𝑚: dimension of Euclidean space; 𝑑 : doubling

dimension; Δ: aspect ratio; †
when 𝛿 (𝑞, 𝑣∗ ) ≤ 𝜏 .

which balance query accuracy and search time by returning a point whose distance to 𝑞 is within a

𝑐-factor of the exact NN.

In recent years, numerous studies [5, 22, 50, 56, 62, 68] have demonstrated that proximity graph-

based solutions exhibit superior empirical performance on real-world data over other indexes (e.g.,

trees [44, 65] and inverted index [6, 39]). A proximity graph (PG) is a simple directed graph, where

each vertex represents a data point 𝑝 ∈ 𝑃 and edges are connected based on particular geometric

properties (usually close neighbors in distance). Given a query point 𝑞, a simple greedy routing
is performed to find an ANN of 𝑞: starting from a fixed or random entry vertex, at each step, it

explores the nearest out-neighbor of the currently visited vertex to 𝑞. This process traverses a

search path until no closer nodes can be identified, returning the closest visited point as the answer
1
.

The running time of the algorithm is bounded by the total out-degree of the nodes on the search

path. Therefore, to ensure efficient query performance, the goal is to construct a sparse graph (with

a low maximum out-degree) that allows the search algorithm to converge to the ANNs of 𝑞 quickly.

1.1 Existing PGs and Their Limitations
Most methods for constructing PGs follow a common framework. For each data point 𝑝 , we first

obtain a candidate setV of points from 𝑃 that are close to 𝑝 , through greedy search on a base graph

(e.g., an approximate 𝐾-NN graph [22, 56]) or an intermediate graph over a subset of 𝑃 [50, 62].

A small subset of V is then selected as the out-neighbors of 𝑝 to maintain graph connectivity.

Crucially, the resulting graph should have the “shortcutable” property: for any query point 𝑞, if data

point 𝑝 is not an ANN of 𝑞, 𝑝 should have an out-neighbor that is closer to 𝑞 than 𝑝 . To achieve this,

1
We can generalize the algorithm to find 𝑘 ANNs by maintaining a sorted list, known as the beam search algorithm (see

Section 2.2).
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existing PG solutions introduce edge pruning rules to eliminate unnecessary candidates inV in the

following procedure. For each point 𝑢 ∈ V processed in ascending order of the distances to 𝑝 :

• 𝑢 is pruned if there already exists an out-neighbor 𝑣 of 𝑝 falling within the intersection of the

two balls
2 𝐵(𝑝, 𝛿 (𝑝,𝑢)) and 𝐵(𝑢, 𝑟 ), where 𝑟 > 0 is the pruning radius depending on 𝛿 (𝑝,𝑢);

• otherwise, 𝑢 is added as a new out-neighbor of 𝑝 .

Different choices of the pruning radius 𝑟 lead to distinct properties and search guarantees of PGs.

In early PG methods, such as HNSW [50] and NSG [22], 𝑟 is set directly to 𝛿 (𝑝,𝑢), as illustrated in

Fig. 1a. WhenV = 𝑃 \ {𝑝} for every 𝑝 ∈ 𝑃 (the candidate set is the entire dataset), the constructed

PG is the monotonic relative neighborhood graph (MRNG) and has the following property [2, 22]:

if query 𝑞 is a data point in 𝑃 , a greedy routing will always terminate at 𝑞. The query time is

𝑂 (𝑛2/𝑚
ln𝑛) when the points in 𝑃 are from a uniform distribution in the𝑚-dimensional Euclidean

space [22]. However, the search path length can be as large as 𝑂 (𝑛) in the worst case, and when

𝑞 ∉ 𝑃 , MRNG does not guarantee finding even an ANN.

The Vamana graph in the DiskANN method [62] employs a more relaxed edge pruning rule

by setting 𝑟 = 𝛿 (𝑝,𝑢)/𝛼 (see Figure 1b) where 𝛼 > 1 is a parameter. WhenV = 𝑃 \ {𝑝} for each
𝑝 ∈ 𝑃 , we refer to the constructed PG as the slow preprocessing version of Vamana. It can be verified

that the distance of every visited node on the search path to the query point decreases by an

𝛼-multiplicative factor when 𝑞 ∈ 𝑃 , but this does not hold when 𝛿 (𝑞, 𝑣∗) > 0. Recently, Indyk and

Xu [35] studied the worst-case performance of popular PGs (such as HNSW, NSG, and Vamana)

when 𝛿 (𝑞, 𝑣∗) can be arbitrarily large. They proved that only (the slow preprocessing version of)

Vamana provides approximation guarantees: a greedy routing finds an ( 𝛼+1

𝛼−1
+ 𝜖)-ANN of 𝑞 in

𝑂 (𝛼𝑑 · logΔ · log𝛼
Δ

(𝛼−1)𝜖 ) time. Here, Δ is the aspect ratio3 of 𝑃 , and 𝑑 is the doubling dimension of

the dataset (an intrinsic dimensionality, see Section 2.3). However, Vamana still cannot find the

exact NN when 𝑞 ∉ 𝑃 .

A more practical scenario between 𝛿 (𝑞, 𝑣∗) = 0 and 𝛿 (𝑞, 𝑣∗) = ∞ is the case when 𝛿 (𝑞, 𝑣∗) is
bounded by a small constant 𝜏 > 0, as observed by [31, 56] in real-world datasets. Recently, Peng

et al. [56] proposed the 𝜏-monotonic graph (𝜏-MG) such that after each step in a greedy routing,

the distance between the next visited node and query point 𝑞 is reduced by a 𝜏-additive factor.

𝜏-MG is constructed withV = 𝑃 \ {𝑝} for each 𝑝 ∈ 𝑃 and another edge pruning rule by setting

𝑟 = 𝛿 (𝑝,𝑢) − 3𝜏 (see Figure 1c). The average search time of 𝜏-MG is 𝑂 (𝑛1/𝑚 (ln𝑛)2) when 𝑃 is from

a uniform distribution. But as the starting point may have a very large distance to 𝑞, the worst-case

search time is still 𝑂 (𝑛).
Motivation. As summarized in Table 1, no existing algorithm can find the exact NN in poly-

logarithmic time under the assumption that 𝛿 (𝑞, 𝑣∗) ≤ 𝜏 , even when the dataset has a constant

doubling dimension. Solving this problemwill address an open question in the theoretical foundation

of proximity graphs. Another question is whether we can combine the advantages of Vamana with

𝜏-MG and propose a unified framework that, when 𝛿 (𝑞, 𝑣∗) ≤ 𝜏 , finds the exact NN, and when

𝛿 (𝑞, 𝑣∗) > 𝜏 , returns an ANN, with search times consistently poly-logarithmic. In this paper, we

will design a new PG framework that addresses these questions affirmatively.

From a practical standpoint, our goal is to enhance both the accuracy and efficiency of existing

PG algorithms. We seek to develop practical PGs that provide robust query performance on real

datasets, regardless of whether the condition 𝛿 (𝑞, 𝑣∗) ≤ 𝜏 holds.

2
Given any point 𝑝 ∈ X and 𝑟 > 0, the ball 𝐵 (𝑝, 𝑟 ) with radius 𝑟 represents the set containing all the points in X whose

distance to 𝑝 is at most 𝑟 .
3
The ratio between the maximum and minimum pairwise distances of 𝑃 .
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1.2 Our Contributions
A new proximity graph with enhanced guarantees.We propose a new PG, the 𝛼-convergent
graph (𝛼-CG), in which we setV = 𝑃 \ {𝑝} for each 𝑝 ∈ 𝑃 , and then utilize a carefully designed

edge pruning rule that incorporates both parameters 𝜏 and 𝛼 to eliminate unnecessary candidates.

Specifically, as illustrated in Figure 1d, we set 𝑟 = 1

𝛼
(𝛿 (𝑝,𝑢) − (𝛼 + 1)𝜏), which reduces the radius

of the ball 𝐵(𝑢, 𝛿 (𝑝,𝑢)) by first subtracting (𝛼 + 1)𝜏 from 𝛿 (𝑝,𝑢) and then scaling a multiplicative

factor of 𝛼 . The intersection area is strictly smaller than that of the MRNG and Vamana.

With this new edge pruning rule, we prove that the 𝛼-CG admits non-trivial theoretical guar-

antees. When 𝛿 (𝑞, 𝑣∗) ≤ 𝜏 , our 𝛼-CG can find the exact NN of 𝑞 in 𝑂 ((𝛼𝜏)𝑑 logΔ log𝛼 Δ) time,

thereby achieving the first algorithm that can find the exact NN in poly-logarithmic time when

the doubling dimension is constant (see Table 1). A critical property of our PG is that after each

hop, the distance from the next visited node to 𝑞 is reduced by an 𝛼-multiplicative factor, and the

search algorithm terminates in 𝑂 (log𝛼 Δ) steps. While 𝜏-MG and the slow preprocessing version

of Vamana terminates in 𝑂 (𝑛) and 𝑂 (log𝛼
Δ

(𝛼−1)𝜖 ) steps, respectively. When 𝛿 (𝑞, 𝑣∗) > 𝜏 , a greedy
routing on 𝛼-CG can find an ( 𝛼+1

𝛼−1
+ 𝜖)-ANN of 𝑞 for any 𝜖 > 0, with the same query accuracy as

that of Vamana. The space, query time, and construction time of 𝛼-CG match those of Vamana [35],

up to an 𝑂 (𝜏𝑑 )-factor (see Theorem 3).

A practical variant with efficient construction. To reduce the index construction time, similar

to existing approaches, we propose a practical variant of our 𝛼-CG, the 𝛼-convergent neighborhood
graph (𝛼-CNG). The graph is constructed by generating a local-neighbor setV for each data point

𝑝 (much smaller than 𝑃 \ {𝑝}), and subsequently applying our edge pruning rule to select a small

subset ofV as the out-neighbors of 𝑝 .

Empirical analysis shows that the parameter 𝛼 greatly affects the performance of our graph.

Increasing 𝛼 reduces the number of search steps but results in higher out-degrees in the PG. This

trade-off complicates the selection of an optimal 𝛼 , a problem that subsequent works [26, 37, 61, 62]

on Vamana have overlooked. We propose an adaptive local pruning strategy that adjusts 𝛼 for

each node locally during graph construction. Starting from a small value, we gradually increase 𝛼

and prune candidates until the node’s out-degree reaches a predefined threshold, preserving long-

distance shortcut edges and maintaining graph connectivity. To construct our graph efficiently, we

implement a distance-reusing mechanism that stores and reuses intermediate computation results

to accelerate the adaptive pruning process, along with a lazy pruning strategy that significantly

reduces the number of pruning operations.

Experiments.We compared our 𝛼-CNGwith 4 state-of-the-art PG indexes on 8 real-world datasets.

At the same accuracy levels, 𝛼-CNG usually reduced distance computations by at least 15% and

search steps by over 45% when compared with the best-performing baseline, while the maximum

speedups in distance computations and search steps can be 2.28x and 2.88x, respectively. These

improvements indidate the faster convergence of our method, making 𝛼-CNG particularly suitable

for disk-based or distributed deployments, where I/O operations scale proportionally with search

steps. Besides, both the index sizes and construction times of 𝛼-CNG are comparable to existing PGs

(e.g., HNSW). We also validated our edge pruning rule by integrating it into HNSW and Vamana,

and the results show that it improved efficiency for most datasets, suggesting the effectiveness of

our pruning rule.

2 Preliminaries
2.1 Problem Setting and Basic Notations
A metric space (X, 𝛿) consists of a set X of points and a distance function 𝛿 : X × X → R≥0

satisfying the triangle inequality 𝛿 (𝑝1, 𝑝2) + 𝛿 (𝑝2, 𝑝3) ≥ 𝛿 (𝑝1, 𝑝3), ∀𝑝1, 𝑝2, 𝑝3 ∈ X. Let 𝑃 ⊆ X be a
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Algorithm 1 beam-search(𝐺 , 𝑞, 𝑠, 𝐿, 𝑘)

Input: graph 𝐺 , query point 𝑞, entry point 𝑠 , queue size 𝐿

Output: 𝑘 ANN of 𝑞

1: candidate queue 𝑄 ← {𝑠}
2: explored set E = ∅
3: while 𝑄 \ E ≠ ∅ do
4: 𝑢∗ ← arg min{𝛿 (𝑥, 𝑞) | 𝑥 ∈ 𝑄 \ E}
5: for each out-neighbor 𝑣 of 𝑢∗ do
6: 𝑄 ← 𝑄 ∪ {𝑣}
7: end for
8: keep the 𝐿 entries in 𝑄 that are closest to 𝑞

9: E ← E ∪ {𝑢∗}
10: end while
11: return 𝑘 points in 𝑄 closest to 𝑞

set of 𝑛 data points from X. Given a query point 𝑞, a point 𝑣∗ ∈ 𝑃 is a nearest neighbor (NN) of 𝑞 if

𝛿 (𝑣∗, 𝑞) ≤ 𝛿 (𝑝, 𝑞) for all 𝑝 ∈ 𝑃 ; while a point 𝑝′ ∈ 𝑃 is a 𝑐-approximate nearest neighbor (𝑐-ANN) of
𝑞 for some constant 𝑐 > 1 if 𝛿 (𝑝′, 𝑞) ≤ 𝑐 · 𝛿 (𝑝, 𝑞) for all 𝑝 ∈ 𝑃 . We want to preprocess 𝑃 into a data

structure with a small space that can answer exact NN or ANN queries efficiently.

For any set 𝑆 ⊆ X, the diameter of 𝑆 — denoted as diam(𝑆) — is the maximum distance of two

points in 𝑆 , while the aspect ratio of 𝑆 is the ratio between diam(𝑆) and the minimum pairwise

distance in 𝑆 . We will use Δ to denote the aspect ratio of the input set 𝑃 . In this paper, we will

assume that the minimum pairwise distance in 𝑃 is exactly 1, as can be achieved by scaling the

distance function 𝛿 appropriately. Hence, we have Δ = 𝑑𝑖𝑎𝑚(𝑃).
This paper studies a practical scenario where the distance from the query point 𝑞 to its NN 𝑣∗ is

bounded by a small constant 𝜏 ∈ (0,Δ]. Our objective is to develop a PG that can find the exact

NN efficiently. For simplicity in the analysis, we assume 𝜏 ≥ 1. The scenario where 𝜏 < 1 can

be handled by using a solution designed for 𝜏 ≥ 1. We will explore how to support ANN queries

efficiently when the condition d(𝑞, 𝑣∗) ≤ 𝜏 does not hold.
Many real-world applications often require retrieving the top-𝑘 nearest neighbors. This leads

to the approximate 𝑘-nearest neighbor search problem, where each query returns a set of 𝑘 data

points whose distances to 𝑞 are no further than the other data points by at most a constant factor.

To evaluate the accuracy of a method, empirical studies often rely on ranking-based metrics that

compare the returned set with the true top-𝑘 results. A widely used metric is recall, which measures

the average fraction of the true 𝑘 nearest neighbors returned by the data structure.

2.2 Proximity Graphs
A proximity graph (PG) on 𝑃 is a simple directed graph𝐺 whose vertices are precisely the points

of 𝑃 . We denote directed edges as (𝑢, 𝑣), representing arcs from vertex 𝑢 to vertex 𝑣 , and define

𝑁 + (𝑢) as the set of out-neighbors of 𝑢 in 𝐺 .

Although various PG methods may use different strategies for connecting the edges in 𝐺 , a

simple greedy algorithm is commonly used to answer 𝑘-ANN queries. As shown in Algorithm 1,

given a query point 𝑞, an entry (starting) point 𝑠 ∈ 𝑃 , and a queue size 𝐿, the beam search algorithm

maintains a queue 𝑄 containing up to 𝐿 of the closest points visited during search. We say a point

𝑢 in 𝑄 is explored if the distances of its out-neighbors to 𝑞 are computed. Initially, 𝑄 contains only

the entry point 𝑠 . At each step, the algorithm selects a point 𝑢∗ ∈ 𝑄 that is closest to 𝑞 and has not
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been explored. It then visits the out-neighbors of 𝑢∗, attempts to insert them into 𝑄 , and marks

𝑢∗ as explored. We refer to 𝑢∗ as a hop vertex. When all the points in 𝑄 are visited, the algorithm

terminates by returning the 𝑘 points in 𝑄 with the smallest distances to 𝑞. A special case is when

𝐿 = 1, the algorithm — referred to as greedy grouting — traverses a sequence of hop vertices having

descending distances to 𝑞, returning the last hop vertex as the answer.

Following the convention of previous works [22, 35, 56], this paper will assume that each

distance computation consumes constant time. The query time of the beam search algorithm is

asymptotically bounded by the total number of distance computations, which is the total out-degree

of the visited hop vertices.

2.3 Doubling Dimension
Given a point 𝑝 and a real value 𝑟 > 0, we will use 𝐵(𝑝, 𝑟 ) to represent the set containing all

the points in X whose distance to 𝑝 is at most 𝑟 ; we refer to 𝐵(𝑝, 𝑟 ) as a ball centered at 𝑝 with

radius 𝑟 . To analyze the performance of PG-based algorithms, we introduce the notion of doubling

dimension, which is often used to measure the “intrinsic dimensionality” of high-dimensional point

sets [10, 29, 41]:

Definition 1 (Doubling Dimension). Let (X, 𝛿) be a metric space. A finite dataset 𝐷 ⊆ X is
said to have doubling constant 𝜆 if, for any point 𝑝 ∈ 𝐷 and radius 𝑟 > 0, the set 𝐷 ∩ 𝐵(𝑝, 𝑟 ) can be
covered by at most 𝜆 balls of radius 𝑟/2, and 𝜆 is the smallest number with this property. The doubling
dimension of 𝐷 is defined as log

2
𝜆.

The doubling dimension generalizes the Euclidean dimension. For any set 𝐷 ⊆ R𝑚
, the doubling

dimension of 𝐷 is 𝑂 (𝑚).4 For example, when𝑚 = 2, any ball of radius 𝑟 can be covered by 7 balls

with radius 𝑟/2, meaning that the doubling constant of 𝐷 is at most log
2

7. Moreover, empirical

studies [19, 35] showed that the doubling dimension of real data sets is often smaller than their

ambient dimension, e.g., dimension 𝑑 of the Euclidean space. Following the previous studies on

doubling dimension [15, 30, 41], this paper assumes that the doubling dimension of input 𝑃 —

denoted as 𝑑 — is 𝑂 (1), namely, 𝑃 has a low doubling dimension. Based on the definition of

doubling dimension, we can derive [35]:

Lemma 1. Consider any set 𝑃 of points with doubling dimension 𝑑 . For any point 𝑝 ∈ 𝑃 and real
values 𝑅 ≥ 𝑟 > 0 satisfying 𝑅/𝑟 = 𝑂 (1), the set 𝑃 ∩ 𝐵(𝑝, 𝑅) can be covered by 𝑂 ((𝑅/𝑟 )𝑑 ) balls of
radius 𝑟 . Formally, there exist 𝑝1, . . . , 𝑝𝑠 ∈ 𝑃 such that:

𝑃 ∩ 𝐵(𝑝, 𝑅) ⊆
𝑠⋃
𝑖=1

𝐵(𝑝𝑖 , 𝑟 ) and 𝑠 =𝑂 ((𝑅/𝑟 )𝑑 ).

3 Alpha-Convergent Graph
This section presents a new PG, called the 𝛼-convergent graph (𝛼-CG), which offers stronger

theoretical guarantees on query time and accuracy. Similar to Vamana and 𝜏-MG, its construction

time is Ω(𝑛2). We will provide a practical variant in Section 4 to reduce the construction time.

3.1 A New Pruning Strategy
Recall that in PG construction, for each point 𝑝 ∈ 𝑃 , we need to select an appropriate subset from a

candidateV as the out-neighbors of 𝑝 . We consider the following sub-problem:

Definition 2 (Neighbor Selection [5]). For each point 𝑝 ∈ 𝑃 and a candidate setV ⊆ 𝑃 \ {𝑝}
of points, select a subset ofV as the out-neighbors of 𝑝 , while maintaining graph connectivity.
4
https://en.wikipedia.org/wiki/Doubling_space
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Algorithm 2 pruning(𝑝,V, 𝛼)

Input: point 𝑝 , candidate setV , parameter 𝛼

Output: a shortcut set 𝑆 of 𝑝 onV
1: sortV in the ascending order of the distances to 𝑝

2: shortcut set 𝑆 = ∅
3: for each 𝑢 ∈ V (sorted) do
4: if there exists a point 𝑣 ∈ 𝑆 satisfying inequality (1)

5: then continue

6: else 𝑆 ← 𝑆 ∪ {𝑢}
7: end for
8: return 𝑆

An algorithm for this subproblem serves as a critical component in PG construction. The goal is

to choose a “shortcut" subset fromV such that if 𝑝 is not the exact NN of 𝑞, then 𝑝 connects to an

out-neighbor 𝑣 much closer to 𝑞 than 𝑝 . To achieve the purpose, we introduce the following edge

pruning rule:

Definition 3 (Edge pruning rule of 𝛼-CG). Given any point 𝑝 and its candidate setV , a point
𝑢 ∈ V is pruned if there exists an out-neighbor 𝑣 of 𝑝 satisfying the following condition:

𝛿 (𝑝,𝑢) > 𝛼 · 𝛿 (𝑢, 𝑣) + (𝛼 + 1) · 𝜏 (1)

where 𝛼 > 1 is a parameter.

It can be verified (1) is equivalent to 𝑣 ∈ 𝐵(𝑝, 𝛿 (𝑝,𝑢)) ∩ 𝐵(𝑢, 𝑟 ) where 𝑟 = 1

𝛼
(𝛿 (𝑝,𝑢) − (𝛼 + 1)𝜏),

as shown in Figure 1d. Given this pruning rule, we define a pruning procedure (Algorithm 2) to

solve the problem in Definition 2. Specifically, we sort the points inV in ascending order according

to their distances to 𝑝 . Then, we iteratively select a subset 𝑆 ofV in the following manner. Initially,

set 𝑆 = ∅. For every point 𝑢 in this sorted sequence, check if there exists a point 𝑣 ∈ 𝑆 satisfying
the condition (1). If not, add 𝑢 into 𝑆 ; otherwise, skip 𝑢 and proceed to check the next point. When

all points inV are checked, the procedure returns 𝑆 , which will be referred to as the shortcut set
of 𝑝 onV . The next subsection will show that whenV = 𝑃 \ {𝑝}, the edges from 𝑝 to nodes in 𝑆

satisfy the “shortcutable” property with a fast convergence rate.

3.2 The 𝛼-Convergent Graph
Based on our new edge pruning rule, we define the 𝛼-CG 𝐺 of 𝑃 as follows:

Definition 4 (𝛼-convergent graph). Every point of 𝑃 is a vertex of 𝐺 and vice versa. For each
point 𝑝 ∈ 𝑃 , run the pruning procedure (Algorithm 2) with V = 𝑃 \ {𝑝}, and define the returned
shortcut set 𝑆 as the out-neighbors of 𝑝 in 𝐺 .

We begin by proving the following property.

Lemma 2 (𝛼-reducible property). Consider any point 𝑞 whose exact NN 𝑣∗ ∈ 𝑃 satisfies 𝛿 (𝑞, 𝑣∗) ≤
𝜏 . For every point 𝑝 ∈ 𝑃 with 𝑝 ≠ 𝑣∗, either (i) 𝑣∗ is an out-neighbor of 𝑝 in 𝐺 , or (ii) there exists an
edge (𝑝, 𝑝′) in 𝐺 such that 𝛿 (𝑝′, 𝑞) ≤ 𝛿 (𝑝, 𝑞)/𝛼 .

Proof. Consider any 𝑝 ∈ 𝑃 such that 𝑝 ≠ 𝑣∗ and 𝑣∗ is not an out-neighbor of 𝑝 in 𝐺 . According

to Definition 3, as 𝑣∗ is pruned from 𝑝’s candidate set, there must exist an out-neighbor 𝑝′ of 𝑝
such that (by setting 𝑢 = 𝑣∗ and 𝑣 = 𝑝′):

𝛿 (𝑝, 𝑣∗) > 𝛼 · 𝛿 (𝑝′, 𝑣∗) + (𝛼 + 1) · 𝜏 . (2)
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Fig. 2. Geometric illustrations of the pruning rule. (a) Illustration of the 𝛼-reducible property. (b,c) Two cases
in the out-degree analysis.

Combining the above with the triangle inequality 𝛿 (𝑝, 𝑞) ≥ 𝛿 (𝑝, 𝑣∗) − 𝛿 (𝑞, 𝑣∗), we have
𝛿 (𝑝, 𝑞) ≥ 𝛿 (𝑝, 𝑣∗) − 𝛿 (𝑞, 𝑣∗)
(by (2)) > 𝛼 · 𝛿 (𝑝′, 𝑣∗) + (𝛼 + 1) · 𝜏 − 𝛿 (𝑞, 𝑣∗)

≥ 𝛼 · 𝛿 (𝑝′, 𝑣∗) + 𝛼 · 𝜏 (3)

where the last inequality used the assumption that 𝛿 (𝑞, 𝑣∗) ≤ 𝜏 . On the other hand, according to

the triangle inequality, we have

𝛿 (𝑝′, 𝑞) ≤ 𝛿 (𝑝′, 𝑣∗) + 𝛿 (𝑣∗, 𝑞) ≤ 𝛿 (𝑝′, 𝑣∗) + 𝜏 . (4)

Inequalities (3) and (4) together imply that 𝛿 (𝑝, 𝑞)/𝛿 (𝑝′, 𝑞) ≥ 𝛼 , finishing the proof of the lemma. □

See an illustration of the property in Figure 2a. Given any query𝑞 satisfying 𝛿 (𝑞, 𝑣∗) ≤ 𝜏 , Lemma 2

implies that greedy routing from any starting vertex quickly converges to the exact NN of 𝑞: at

each step, if the current vertex is not 𝑣∗, then either the next hop reaches 𝑣∗ or the distance from
the next vertex to 𝑞 decreases by an 𝛼 factor.

3.3 Theoretical Analysis
This subsection will establish:

Theorem 3. Let 𝑃 be a set of 𝑛 points and 𝐺 be the 𝛼-CG of 𝑃 . Consider any query point 𝑞 whose
exact NN in 𝑃 is 𝑣∗.
• If 𝛿 (𝑞, 𝑣∗) ≤ 𝜏 , a greedy routing on 𝐺 can find 𝑣∗ in 𝑂 ((𝛼 · 𝜏)𝑑 · logΔ log𝛼 Δ) time.
• Otherwise, a greedy routing on𝐺 can find an ( 𝛼+1

𝛼−1
+𝜖)-ANN of𝑞 in𝑂 ((𝛼 ·𝜏)𝑑 ·logΔ log𝛼

Δ
(𝛼−1)𝜖 )

time, for any 𝜖 > 0.
The 𝛼-CG𝐺 has space𝑂 (𝑛 · (𝛼𝜏)𝑑 logΔ) and can be constructed in𝑂 (𝑛2 · ((𝛼𝜏)𝑑 logΔ+ log𝑛)) time.

The above result shows that our 𝛼-CG captures the Vamana graph. When 𝜏 = 1, our 𝛼-CG

achieves the same space and query time while providing a slightly better accuracy guarantee (it can

find the exact NN when 𝛿 (𝑞, 𝑣∗) ≤ 1). For 𝜏 > 1, our method further improves query accuracy with

only a modest increase in space and search time: 𝛼-CG can find the exact NN of 𝑞 when d(𝑞, 𝑣∗) ≤ 𝜏 ,
with both space and query time incurring an additional 𝑂 (𝜏𝑑 ) factor. Readers may observe the

exponential dependence on 𝛼 and 𝜏 ; these are theoretical upper bounds, and in our experiments,

small values of 𝛼 and 𝜏 already yield strong empirical performance.

The rest of the subsection serves as a proof of Theorem 3. We first show that the maximum

out-degree of 𝐺 is 𝑂 ((𝛼𝜏)𝑑 logΔ) and analyze its construction time. After that, we analyze the

search path length of the greedy routing algorithm under the two cases 𝛿 (𝑞, 𝑣∗) ≤ 𝜏 and 𝛿 (𝑞, 𝑣∗) > 𝜏 .
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3.3.1 Space and Construction Time. We first prove that 𝐺 has a low maximum out-degree:

Lemma 4. The 𝛼-CG 𝐺 of 𝑃 has maximum out-degree 𝑂 ((𝛼 · 𝜏)𝑑 logΔ), where 𝑑 is the doubling
dimension of 𝑃 .

Proof. Consider any point 𝑝 ∈ 𝑃 . The out-neighbors of 𝑝 in 𝐺 is the returned set of pruning(𝑝 ,

𝑃 \ {𝑝}, 𝛼), which is the shortcut set 𝑆 of 𝑝 on 𝑃 \ 𝑝 . For each integer 𝑖 ∈ [0, ⌈log
2
Δ⌉], define:

Ring𝑖 = {𝑝′ ∈ 𝑃 | 𝑅𝑖 < 𝛿 (𝑝, 𝑝′) ≤ 2𝑅𝑖 } , where 𝑅𝑖 =
Δ

2
𝑖+1
. (5)

Recall that Δ is the diameter of 𝑃 , and the minimum pairwise distance of points in 𝑃 is 1. For every

𝑝′ ∈ 𝑃 , because 𝛿 (𝑝, 𝑝′) ∈ [1,Δ], there is a unique 𝑖 ∈ [0, ⌈log
2
Δ⌉] such that 𝑝′ ∈ Ring𝑖 . Hence, we

partition 𝑃 \ {𝑝} into ⌈log
2
Δ⌉ + 1 subsets.

Consider any 𝑖 ∈ [0, ⌈log
2
Δ⌉]. We will prove that 𝑝 has 𝑂 ((𝛼 · 𝜏)𝑑 ) out-neighbors in Ring𝑖 .

Because there are 𝑂 (logΔ) rings, the out-degree of 𝑝 is thus 𝑂 ((𝛼 · 𝜏)𝑑 logΔ).
Case 1: 𝑅𝑖 ≤ 2(𝛼 + 1)𝜏 . In this case, we use balls of radius 𝑟𝑖 =

1

3
to cover the ball 𝐵(𝑝, 2𝑅𝑖 ) and

hence Ring𝑖 . According to Lemma 1, the number of such balls is

𝑂

((
2𝑅𝑖

1/3

)𝑑 )
= 𝑂

((
4(𝛼 + 1)𝜏

1/3

)𝑑 )
(by 𝛼 > 1) = 𝑂

((
8𝛼 · 𝜏
1/3

)𝑑 )
=𝑂 ((𝛼 · 𝜏)𝑑 )

where the last equality used the assumption 𝑑 = 𝑂 (1). Since the minimum distance between

any two points in 𝑃 is 1, each ball of radius
1

3
contains at most one point (see Figure 2b). Thus,

|Ring𝑖 | =𝑂 ((𝛼 · 𝜏)𝑑 ), meaning that 𝑝 has 𝑂 ((𝛼 · 𝜏)𝑑 ) out-neighbors in Ring𝑖 .

Case 2: 𝑅𝑖 > 2(𝛼 + 1)𝜏 . We cover Ring𝑖 using balls of radius 𝑟𝑖 =
𝑅𝑖−(𝛼+1)𝜏

2𝛼
. For any two points

𝑢, 𝑣 ∈ Ring𝑖 , if 𝑢 and 𝑣 are in the same ball with radius 𝑟𝑖 , then, we have:

𝛿 (𝑢, 𝑣) ≤ 2𝑟𝑖 =
𝑅𝑖 − (𝛼 + 1)𝜏

𝛼

⇒ 𝛿 (𝑢, 𝑣) · 𝛼 ≤ 𝑅𝑖 − (𝛼 + 1)𝜏 < 𝛿 (𝑝,𝑢) − (𝛼 + 1)𝜏
⇒ 𝛿 (𝑝,𝑢) > 𝛿 (𝑢, 𝑣) · 𝛼 + (𝛼 + 1)𝜏 .

Similarly, we can obtain 𝛿 (𝑝, 𝑣) > 𝛿 (𝑢, 𝑣) · 𝛼 + (𝛼 + 1)𝜏 . According to the pruning rule defined by

(1), at most one of 𝑢 and 𝑣 can be in the shortcut set 𝑆 of 𝑝 . Hence, for any ball 𝐵 with radius 𝑟𝑖 , at

most one point in Ring𝑖 ∩ 𝐵 can be an out-neighbor of 𝑝 . For instance, in Figure 2c, when 𝑣 and 𝑣 ′

are the our-neighbors of 𝑝 , then edges (𝑝,𝑢) and (𝑝,𝑢′) will not exist in our PG.

Next, we will show that 𝐵(𝑝, 2𝑅𝑖 ), and hence Ring𝑖 , can be covered by 𝑂 (𝛼𝑑 ) balls with radius

𝑟𝑖 , implying 𝑝 has 𝑂 (𝛼𝑑 ) out-neighbors in Ring𝑖 . By Lemma 1, the number of balls with radius 𝑟𝑖
needed to cover Ring𝑖 is at most:

𝑂

((
2𝑅𝑖

𝑟𝑖

)𝑑 )
= 𝑂

((
2𝑅𝑖 ·

2𝛼

𝑅𝑖 − (𝛼 + 1)𝜏

)𝑑 )
= 𝑂

(
4𝛼

(
1 + (𝛼 + 1)𝜏

𝑅𝑖 − (𝛼 + 1)𝜏

)𝑑 )
(by 𝑅𝑖 ≥ 2(𝛼 + 1)𝜏) = 𝑂 ((8𝛼)𝑑 ) =𝑂 (𝛼𝑑 )

where the last inequality used the assumption 𝑑 =𝑂 (1).
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Combining the above two cases and the fact 𝜏 ≥ 1, we conclude that the maximum out-degree of

𝐺 is 𝑂 ((𝛼 · 𝜏)𝑑 logΔ). □

Construction time. The pruning(𝑝 ,V , 𝛼) procedure (Algorithm 2) finishes in 𝑂 ( |V| · (log |V| +
|𝑆 |)) time. To see this, Line 1 of algorithm 2 finishes in 𝑂 ( |V| log |V|) time. For each loop of Line

3, we need to check if a point 𝑢 ∈ V can be pruned by a point in 𝑆 . A linear scan finishes in 𝑂 ( |𝑆 |)
time. Because there are |V| iterations, the total time of the algorithm is thus𝑂 ( |V| · (log |V| + |𝑆 |)).
Recall that the out-neighbor set 𝑁 + (𝑝) of each point 𝑝 ∈ 𝑃 is obtained by calling pruning(𝑝 ,

V , 𝛼) with V = 𝑃 \ {𝑝}. According to Lemma 4, we have |𝑆 | = |𝑁 + (𝑝) | = 𝑂 ((𝛼 · 𝜏)𝑑 logΔ),
implying that the pruning procedure computes the out-neighbors of 𝑝 in𝑂 (𝑛 · ( |𝑁 + (𝑝) | + log𝑛)) =
𝑂 (𝑛 · ((𝛼 · 𝜏)𝑑 logΔ + log𝑛)) time. As |𝑃 | = 𝑛, we can conclude that the total construction time of

the 𝛼-CG is 𝑂 (𝑛2 · ((𝛼 · 𝜏)𝑑 logΔ + log𝑛)).

3.3.2 Query Time. When 𝛿 (𝑞, 𝑣∗) ≤ 𝜏 . The 𝛼-reducible property has an important implication

on the behavior of the beam search algorithm, even when 𝐿 = 1: If the current hop vertex 𝑝 visited

by the algorithm is not the exact NN 𝑣∗, 𝑝 has an out-neighbor (thus the next hop vertex) whose

distance to 𝑞 is reduced by an 𝛼-multiplicative factor. Based on this property, we have the following

result about the number of hop vertices visited:

Lemma 5. Consider any query point 𝑞 whose exact NN 𝑣∗ in 𝑃 satisfies 𝛿 (𝑞, 𝑣∗) ≤ 𝜏 . The greedy
routing (beam search with 𝐿 = 1) algorithm starting with any entry point 𝑠 in 𝐺 can find the exact
NN of 𝑞 by visiting 𝑂 (log𝛼 Δ) hop vertices.

Proof. Let 𝜎 = (𝑝1, 𝑝2, ..., 𝑝ℓ ) be the sequence of ℓ hop vertices visited by greedy grouting. We

thus have 𝑝1 = 𝑠 . To see 𝑝ℓ = 𝑣
∗
, suppose the last visited hop vertex 𝑝ℓ ≠ 𝑣

∗
. Then, according to

Lemma 2, there exists an out-neighbor of 𝑝ℓ in 𝐺 that is closer to 𝑞 than 𝑝ℓ , contradicting that the

algorithm terminates at 𝑝ℓ .

Next, we prove ℓ =𝑂 (log𝛼 Δ). For any entry point 𝑠 ∈ 𝑃 , 𝛿 (𝑠, 𝑞) ≤ 𝛿 (𝑠, 𝑣∗) +𝛿 (𝑣∗, 𝑞) ≤ diam(𝑃) +
𝜏 ≤ 2Δ. Recall that 𝜏 ≤ Δ and diam(𝑃) is the diameter of the dataset 𝑃 ; as the minimum pairwise

distance in 𝑃 is 1, we have Δ = diam(𝑃) (see Section 2.1).

Our first claim is that for every 𝑖 ∈ [1, ℓ − 2], we have 𝛿 (𝑝𝑖+1, 𝑞) ≤ 𝛿 (𝑝𝑖 , 𝑞)/𝛼 . To see this, observe
that 𝑣∗ cannot be an out-neighbor of 𝑝𝑖 ; otherwise, the greedy grouting would terminate at 𝑝𝑖+1,

visiting 𝑖 + 1 ≤ ℓ − 1 hop vertices and thereby contradicting the fact that 𝜎 has size ℓ . Then, by

Lemma 2, we have 𝛿 (𝑝𝑖+1, 𝑞) ≤ 𝛿 (𝑝𝑖 , 𝑞)/𝛼 , and
𝛿 (𝑝ℓ−1, 𝑞) ≤ 𝛿 (𝑝1, 𝑞)/𝛼 ℓ−2

⇒ ℓ ≤ log𝛼 (𝛿 (𝑝1, 𝑞)/𝛿 (𝑝ℓ−1, 𝑞)) + 2. (6)

Now, we prove that 𝛿 (𝑝ℓ−1, 𝑞) ≥ 1/2. If 𝛿 (𝑣∗, 𝑞) ≥ 1/2, then, since 𝑣∗ is the exact NN of 𝑞 in 𝑃 , we

have 𝛿 (𝑝ℓ−1, 𝑞) > 𝛿 (𝑞, 𝑣∗) > 1/2. On the other hand, if 𝛿 (𝑣∗, 𝑞) < 1/2, by triangle inequality and

the fact that the minimum pairwise distance in 𝑃 is 1, we obtain

𝛿 (𝑝ℓ−1, 𝑞) ≥ 𝛿 (𝑝ℓ−1, 𝑣
∗) − 𝛿 (𝑞, 𝑣∗) ≥ 1 − 1/2 = 1/2.

Hence, in both cases 𝛿 (𝑝ℓ−1, 𝑞) ≥ 1/2. Plugging this bound into Inequality (6), we obtain

ℓ ≤ log𝛼 (2Δ/(1/2)) + 2 =𝑂 (log𝛼 Δ).
Thus, the algorithm finds the exact NN of 𝑞 after visiting 𝑂 (log𝛼 Δ) hop vertices, and the lemma

follows. □

According to Lemma 4, every vertex of 𝐺 has a maximum out-degree at most 𝑂 ((𝛼 · 𝜏)𝑑 logΔ).
Since a greedy routing can find the exact NN of 𝑞 by visiting𝑂 (log𝛼 Δ) hop vertices (Lemma 5), the

search algorithm finishes in𝑂 ((𝛼 · 𝜏)𝑑 logΔ log𝛼 Δ) time. This proves the first bullet of Theorem 3.
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Algorithm 3 𝛼-CNG-construction

Input: data points 𝑃 , 𝐾 for 𝐾-NN graph, out-degree threshold𝑀 , queue size 𝐿, candidate size 𝐶 ,

initial parameter 𝛼0, max parameter 𝛼max, step size Δ𝛼 , runing parameter 𝜏

Output: 𝛼-CNG 𝐺
/* Phase 1: approximate 𝐾-NN graph and entry point */

1: 𝐺0 ← BuildApproxKNNGraph(𝑃, 𝐾)
2: 𝑠 ← beam-search(𝐺0, centroid(𝑃), random_point, 𝐿, 𝑘 = 1)

/* Phase 2: candidate generation and pruning */

3: 𝐺 ← a graph with vertex set 𝑃 and no edges

4: for each point 𝑝 ∈ 𝑃 do
5: V ← beam-search(𝐺0, 𝑝, 𝑠, 𝐿,𝐶)
6: 𝑁 + (𝑝) ← adaptive-pruning(𝑝,V, 𝑀, 𝛼0, 𝛼max,Δ𝛼)
7: end for

/* Phase 3: backward edge insertion and lazy pruning */

8: for each (𝑢, 𝑣) in 𝐺 , insert (𝑣,𝑢) into 𝐺
9: for each 𝑝 with |𝑁 + (𝑝) | > 𝑀 do
10: 𝑁 + (𝑝) ← adaptive-pruning(𝑝, 𝑁 + (𝑝), 𝑀, 𝛼0, 𝛼max,Δ𝛼)
11: end for

/* Phase 4: connectivity examination */

12: DFS-tree 𝑇 ← DFS(𝐺, 𝑠)
13: for each 𝑝 ∈ 𝑃 \𝑇 , add necessary edges from 𝑇 to 𝑝

14: return 𝐺

When 𝛿 (𝑞, 𝑣∗) > 𝜏 .We say a proximity graph𝐺 ′ is 𝛼-shortcut reachable if for every two vertices 𝑝, 𝑧
of𝐺 ′ such that (𝑝, 𝑧) is not in𝐺 ′, then, there exists an edge (𝑝, 𝑝′) in𝐺 ′ such that𝛿 (𝑝′, 𝑧) ≤ 𝛿 (𝑝, 𝑧)/𝛼 .
Indyk and Xu [35, Theorem 3.4] proved that given an 𝛼-shortcut reachable PG, a greedy routing

starting at any vertex can answer an ( 𝛼+1

𝛼−1
+𝜖)-ANN query after visiting𝑂 (log𝛼

Δ
(𝛼−1)𝜖 ) hop vertices.

Our 𝛼-CG 𝐺 is also 𝛼-shortcut reachable:

• For any two vertices 𝑝, 𝑧 such that (𝑝, 𝑧) is not in 𝐺 , by definition of the pruning rule

(Definition 3), there must exist a vertex 𝑝′ such that 𝛿 (𝑝′, 𝑧) < 1

𝛼
(𝛿 (𝑝, 𝑧)−(𝛼+1)𝜏) < 1

𝛼
𝛿 (𝑝, 𝑧),

implying that 𝐺 is 𝛼-shortcut reachable.

Together with Lemma 4, we can conclude that the query time is 𝑂 ((𝛼𝜏)𝑑 logΔ log𝛼
Δ

(𝛼−1)𝜖 ). The
second bullet of Theorem 3 then follows. This finishes the proof of Theorem 3.

Remark. The main difference among our 𝛼-CG and existing PGs, such as MRNG, 𝜏-MG, and

Vamana, lies in the edge pruning rules, which significantly impact query performance. This paper

finds a crafted edge pruning rule that leads to a new PG with enhanced guarantees, supported by a

non-trivial theoretical analysis.

4 Alpha-Convergent Neighborhood Graph with Efficient Construction
Despite the superior asymptotic query performance of the 𝛼-CG, its construction time is Ω(𝑛2)
in the worst case. In line with existing works such as NSG [22], Vamana [62], and 𝜏-MNG [56],

we propose a practical variant that approximates 𝛼-CG. This section also explores strategies for

adaptively pruning candidates (setting the parameter 𝛼) and constructing the index efficiently.

Proc. ACM Manag. Data, Vol. 4, No. 1 (SIGMOD), Article 36. Publication date: February 2026.



36:12 Binhong Li, Xiao Yan, and Shangqi Lu

q

g

dc

a b

e f

h

i

j

Fig. 3. When the shortcut set 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 } of 𝑔 has size larger than 𝑀 = 4, the two edges (𝑔, 𝑒) and
(𝑔, 𝑓 ) are pruned.

4.1 The Overall Framework
We employ a standard framework utilized in existing PG methods, such as NSG [22] and 𝜏-MNG

[56], to generate a local-neighbor set (as opposed to 𝑃 \ 𝑝) as the candidate set for each point

𝑝 ∈ 𝑃 . Then, we apply an adaptive pruning strategy (Section 4.2) to select up to 𝑀 points as the

out-neighbors of 𝑝 , where 𝑀 is a predefined maximum out-degree that ensures efficient graph

storage and computation. We refer to resulting graph 𝐺 as the 𝛼-convergent neighborhood graph
(𝛼-CNG). This framework consists of the following phases, as summarized in Algorithm 3.

The initial phase constructs an approximate 𝐾-NN graph𝐺0, where each data point is connected

to its approximate𝐾-NNs in 𝑃 . Efficient implementations are available for constructing such graphs,

e.g., [18, 31]. We then identify the navigating node 𝑠 by performing a beam search, starting from a

random point with the centroid of 𝑃 (the geometric mean of all points in 𝑃 ) as the query point. The

returned NN is designated as 𝑠 .

Next, we generate a local-neighbor setV for each point 𝑝 using 𝐺0. We execute a beam search

starting from node 𝑠 , using 𝑝 as the query. All points visited during this search (whose distances to

𝑝 are computed) are gathered. LetV be the set of the 𝐶 closest points to 𝑝 that are collected. We

then apply our adaptive pruning method to select a subset of at most𝑀 points fromV , which will

be assigned as the out-neighbors of 𝑝 in the 𝛼-CNG 𝐺 .

Subsequently, backward edges are added to the graph for each edge inserted in the previous phase,

ensuring bidirectional connectivity. If any vertex 𝑝’s out-degree exceeds𝑀 , its out-neighbor set is

pruned accordingly using our adaptive pruning method. Finally, we verify the graph connectivity

by performing a depth-first search (DFS) starting from 𝑠 . To ensure that all nodes are reachable

from 𝑠 , we add necessary edges for any nodes not included in the DFS tree, in line with the NSG

method [22].

4.2 Adaptive Local Pruning
To incorporate our pruning strategy (Algorithm 2) into the above framework, a critical question is

the parameter setting for 𝛼 , which greatly impacts the query performance of our 𝛼-CNG. According

to Lemma 2, each time a new hop vertex is visited, the distance to 𝑞 decreases by at least a factor of

𝛼 , unless the routing directly reaches the exact NN 𝑣∗. While a larger 𝛼 accelerates convergence

to the ANNs, it also leads to an exponential increase in the out-degree of each node (Lemma 4).

Therefore, achieving a balance between out-degree and convergence rate is essential for efficient

query performance. Despite the use of 𝛼 in Vamana, a widely utilized PG, little attention has been

paid to determining its optimal value.

Recall that in our framework, each node can have an out-degree of at most 𝑀 . However, the

shortcut set 𝑆 returned by the pruning method (Algorithm 2) may exceed this size, particularly

when 𝛼 is large. A common approach used in the literature is to return the𝑀 closest points in 𝑆 to

𝑝 , but this may lead to the omission of long-distance shortcut edges. For instance, as illustrated in

Figure 3, the vertices from 𝑎 to 𝑓 form the shortcut set of 𝑔. When 𝑀 = 4, both 𝑒 and 𝑓 become

disconnected from 𝑔, resulting in the pruning of the longest shortcut edges (𝑔, 𝑒) and (𝑔, 𝑓 ) from
the PG. Consequently, given the query point 𝑞 in Figure 3, a greedy routing will fail to find the exact
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Algorithm 4 adaptive-pruning(𝑝,V, 𝑀, 𝛼0, 𝛼max,Δ𝛼)
Input: point 𝑝 , candidate setV , maximum out-degree threshold𝑀 , initial parameter 𝛼0, max

parameter 𝛼max, step size Δ𝛼
Output: a set of at most𝑀 shortcut points

1: 𝛼 ← 𝛼0

2: 𝑆 ← ∅
3: while |𝑆 | < 𝑀/2 and 𝛼 ≤ 𝛼max do
4: 𝑆 ← pruning(𝑝,V, 𝛼)
5: 𝛼 ← 𝛼 + Δ𝛼
6: end while
7: return𝑀 closest points of 𝑆 to 𝑝

NN 𝑗 of 𝑞 when starting from node 𝑔. This example illustrates that when the size of the shortcut

set exceeds the threshold𝑀 , the longest shortcut edges are omitted from the constructed graph,

thereby reducing graph connectivity.

We propose an adaptive strategy (Algorithm 4) that gradually adjusts the parameter 𝛼 and

preserves as many long-distance shortcut edges as possible. Since each data point has a different

local-neighbor set, a global 𝛼 may lead to varying shortcut set sizes across data points. Therefore,

we tune the parameter 𝛼 for each data point 𝑝 locally. Specifically, we start with a small initial value

of 𝛼 = 𝛼0 and run the pruning method. Whenever the returned shortcut set 𝑆 is smaller than the

threshold𝑀/2, we increase 𝛼 by a small step size Δ𝛼 and rerun the pruning method to find a larger

𝑆 . Note that the size of 𝑆 is highly sensitive to 𝛼 , so we opt to increase 𝛼 by a small value each step.

This procedure aims to find the first 𝛼 for which the corresponding shortcut set 𝑆 exceeds the size

of𝑀/2. We then return the𝑀 points in 𝑆 closest to 𝑝 . This avoids selecting an excessively large 𝛼

and 𝑆 , which could lead to the pruning of long-distance shortcut edges. In the last iteration, the

pruning method can terminate early once it has already collected𝑀 points.

4.3 Efficient Graph Construction
This subsection presents two optimizations to achieve efficient graph construction: (1) a distance

reusing mechanism for adaptive edge pruning, and (2) a lazy pruning strategy for backward edge

insertion. We also provide an analysis of the construction time. A distance-reusing mechanism.
Although the adaptive pruning strategy offers a practical solution for tuning the parameter 𝛼 and

preserving long-distance shortcut edges, it introduces additional computational overhead. Recall

that for each data point 𝑝 and its candidate setV , the adaptive algorithm calls the pruning method

(Algorithm 2) multiple times for a sequence of increasing 𝛼 values. As analyzed in Section 3.3, the

running time of the pruning method is𝑂 ( |V| · (log |V|+|𝑆 |)). Let 𝛼0, ..., 𝛼ℎ be the sequence of tested

𝛼 values and 𝑆0, ..., 𝑆ℎ be the corresponding shortcut sets returned. Since we only need to sortV
once (Line 1 of algorithm 2), the total time is𝑂 ( |V| · (log |V|+∑ℎ

𝑖=0
|𝑆𝑖 |) =𝑂 ( |V| · (log |V|+𝑀 ·ℎ)),

as |𝑆𝑖 | ≤ 𝑀 for each 𝑖 ∈ [0, ℎ]. It can be verified that the running time is dominated by the number

of distance computations.

To reduce the computational overhead, we reuse the intermediate computation results based on

the following observation. When invoking pruning(𝑝 ,V , 𝛼𝑖 ) to obtain the shortcut set 𝑆𝑖 , according

to inequality (1), a point 𝑢 ∈ V is pruned if and only if there exists a point 𝑣 ∈ 𝑆𝑖 satisfying the

condition 𝛿 (𝑝,𝑢) > 𝛼𝑖 · 𝛿 (𝑢, 𝑣) + (𝛼𝑖 + 1) · 𝜏 . Rearranging this leads to

𝛿 (𝑝,𝑢) − 𝜏
𝛿 (𝑢, 𝑣) + 𝜏 > 𝛼𝑖 . (7)
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Define 𝛼 (𝑢, 𝑣) = 𝛿 (𝑝,𝑢 )−𝜏
𝛿 (𝑢,𝑣)+𝜏 . Hence, a point 𝑣 ∈ 𝑆𝑖 can prune 𝑢 if and only if 𝛼 (𝑢, 𝑣) > 𝛼𝑖 . When it is

the first time to evaluate 𝛼 (𝑢, 𝑣) for 𝛼 = 𝛼𝑖 , we can store and reuse it in subsequent iterations by

simply comparing 𝛼 (𝑢, 𝑣) with 𝛼 𝑗 for 𝑗 > 𝑖 . This ensures that 𝛼 (𝑢, 𝑣) is evaluated at most once for

each pair (𝑢, 𝑣) ∈ V ×V .

Denote by 𝑆+ =
⋃ℎ

𝑖=0
𝑆𝑖 , i.e., the set of all points inV that ever appeared in 𝑆𝑖 for some 𝑖 ∈ [0, ℎ].

As we only need to compute 𝛼 (𝑢, 𝑣) for 𝑣 ∈ 𝑆+ and 𝑢 ∈ V . The total number of stored (𝑢, 𝑣)
pairs and thus the number of distance computations is 𝑂 ( |V| · |𝑆+ |). Empirical analysis reveals

that successive shortcut sets 𝑆𝑖 and 𝑆𝑖+1 exhibit significant overlap. The underlying reason is that

as 𝛼 increases, the pruning condition becomes more permissive, allowing most of the points in

𝑆𝑖 to remain in 𝑆𝑖+1, which implies that |𝑆+ | is close to 𝑀 . Therefore, with the distance-reusing

heuristic, the total number of distance computations is close to 𝑂 ( |V| ·𝑀) in practice (rather than

𝑂 ( |V| ·𝑀 ·ℎ)), and the overhead introduced by calling the pruning method multiple times becomes

limited.

Lazy pruning during backward edge insertion. In the backward edge insertion phase (Sec-

tion 4.1), the conventional way used by 𝜏-MNG and NSG inserts each backward edge one by one.

Whenever a node’s out-degree exceeds𝑀 , a pruning procedure is invoked to enforce the out-degree

constraint. We propose a lazy pruning strategy that invokes our adaptive pruning procedure at

most once for each node. Specifically, for each point 𝑝 , we first collect all backward edges starting

from 𝑝 and merge them with 𝑝’s existing out-edges to form a candidate set V . If |V| > 𝑀 , we

invoke the adaptive-pruning procedure to select the final out-neighbors; otherwise,V is assigned

directly as the new neighbor set of 𝑝 .

Total construction time. The construction time of 𝛼-CNG is dominated by two parts: (i) approxi-

mate 𝐾-NN graph construction, and (ii) candidates pruning for all 𝑝 ∈ 𝑃 . We utilize the NN-decent

algorithm [18] to compute the approximate 𝐾-NN graph, whose empirical time complexity is

sub-quadratic.

Thanks to the lazy pruning strategy, we invoke the adaptive-pruning method at most twice for

each 𝑝 ∈ 𝑃 (once in phase 2 and once in phase 3). Since each candidate setV has a size at most 𝐶

(𝐶 ≤ 500 in our experiments), the running time for each adaptive pruning is𝑂 (𝐶 · (log𝐶 +𝑀 ·ℎmax),
where ℎmax is the maximum number of 𝛼 values tested when pruningV . Thus, the total running

time is 𝑂 (𝑛 · 𝐶 (log𝐶 +𝑀 · ℎmax)) + 𝑓 (𝑛) where 𝑓 (𝑛) is the running time of the NN-decent. We

conclude that our construction time is sub-quadratic and comparable to existing practical PGs.

4.4 Discussions
Parameter configuration. Our experiments found that the shortcut set size may already reach

𝑀/2 when 𝛼 < 1 for certain data points. Therefore, the adaptive pruning method begins with

𝛼0 = 0.9; we set Δ𝛼 = 0.05 and 𝛼max = 1.6.

Although 𝜏 is a problem parameter, in our experiments, we set 𝜏 to a small value within the

range [0, 10] (and in most cases, 𝜏 is smaller than 1) to avoid the large maximum out-degree. Both

𝜏-MNG [56] and our paper found that the optimal settings for 𝜏 may vary across different datasets.

Hence, we apply a grid search on the test queries. In practical applications, historical queries can be

leveraged to determine this parameter. Specifically, we first compare the results obtained with 𝜏 = 0

against those with 𝜏 ∈ {10, 1, 0.1, 0.01, 0.001} to identify a coarse range of 𝜏 , and then fine-tune 𝜏

to locate the best value.

Updates. This paper focuses on the development of static PGs that enhance both query accuracy

and query time. Supporting updates is beyond the scope of this work. Nonetheless, concepts from

existing research—such as periodic global rebuilding [56], lazy deletion with masking [61], and
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Table 2. Dataset statistics

Dataset Dim. # Base # Query Source Type

SIFT 128 1M 10K [39] Image

CRAWL 300 1.98M 10K [52] Text

WIKI 384 1M 1K [51] Text

MSONG 420 1M 200 [9] Audio

LAION-I2I 768 1M 10K [59] Image

GIST 960 1M 1K [39] Image

DEEP100M 96 100M 10K [7] Image

BIGANN100M 128 100M 10K [60] Image

in-place update strategies [71]—could be applied to our 𝛼-CNG and may be considered for future

work.

5 Experimental Evaluation
Section 5.1 describes the datasets and competing methods in our evaluation. Section 5.2 assesses

the query performance of our approach compared to baselines, as well as its scalability on large

datasets. Section 5.3 analyzes the impact of the parameters 𝜏 and 𝛼 in our methods. Section 5.4

evaluates the index construction performance. Finally, Section 5.5 explores the effectiveness of our

edge pruning rule by replacing those used in other PGs with our own.

5.1 Experiment Settings
All experiments were conducted on a Linux server equipped with an Intel(R) Xeon(R) Gold 6430

CPU and 512 GB RAM, running Ubuntu 20.04. All methods were implemented in C++ and compiled

with g++ using the -O3 optimization flag.

Datasets. We utilized eight real-world datasets, which are widely adopted in ANN search eval-

uation [12, 20, 22, 27, 50, 56, 73]. These datasets include six at the 1M scale and two at the 100M

scale. The 1M-scale datasets span various application domains, including image (SIFT, LAION-I2I,
GIST), audio (MSONG), and text (WIKI, and CRAWL). We also assessed the scalability of our methods

using the 100M-scale datasets, including DEEP100M5 and BIGANN100M. Table 2 summarizes the key

statistics, including the dimensionality (Dim.), the number of base points (# Base), the number of

query points (# Query), data source, and data type.

CompetingMethods.Our first method, 𝛼-CNG, employs an adaptive pruning strategy (Section 4.2).

To evaluate the effectiveness of this strategy, we examined Fixed-𝛼-CNG, a variant that employs

a global 𝛼 for all data points. Since previous studies [46, 68] have consistently shown that PG-

based methods outperform non-PG methods such as LSH and IVF, we focus our comparisons

on PG-based baselines. We compared our methods against four state-of-the-art PG algorithms:

HNSW [50], Vamana [62], NSG [22], and 𝜏-MNG [56], selected for their robust performance. Three

additional popular algorithms—NSSG [20], DPG [46], and FANNG [31]—were excluded as 𝜏-MNG

[56] outperforms their performance. All baseline implementations use publicly available source

code.

The construction parameters for all structures were selected based on official recommendations

and empirical evaluations. HNSW used a configuration of𝑀 = 32 and 𝑒 𝑓𝐶 = 500 for all datasets, while

Vamana used the settings in [62], with𝑀 = 70, 𝐿 = 75, and 𝛼 = 1.2.

5DEEP100M consists of the first 100 million vectors from the public DEEP1B[7] dataset.

Proc. ACM Manag. Data, Vol. 4, No. 1 (SIGMOD), Article 36. Publication date: February 2026.



36:16 Binhong Li, Xiao Yan, and Shangqi Lu

NSG, 𝜏-MNG, Fixed-𝛼-CNG, and 𝛼-CNG shared core graph parameters 𝐾 , 𝑀 , 𝐿, and 𝐶 . We set

𝐾=200 for all datasets. For SIFT and GIST, we used the settings𝑀=50, 𝐿=40,𝐶=500 and𝑀=70, 𝐿=60,

𝐶=500, respectively, following NSG repository recommendations. For WIKI and LAION-I2I, we
applied a configuration of𝑀=70, 𝐿=60, and𝐶=500. For MSONG, and CRAWL, we set𝑀=100, 𝐿=100, and

𝐶=500. For the two large-scale datasets DEEP100M and BIGANN100M, we adopted the configurations

of𝑀=100, 𝐿=100,𝐶=500 and𝑀=80, 𝐿=100, and𝐶=500 respectively. The pruning-related parameters,

𝛼 and 𝜏 , were empirically tuned for optimal performance. For 𝛼-CNG, we set 𝛼0 = 0.9 (except for

BIGANN100M, where 𝛼0 = 1 was used to include more long edges), Δ𝛼 = 0.05, and 𝛼max = 1.6.

Metrics. Query accuracy was measured using recall@𝑘 , defined as recall@𝑘 =
|KNN(𝑞)∩Res(𝑞) |

𝑘
,

where KNN(𝑞) denotes the exact 𝑘-NN of the query 𝑞, and Res(𝑞) is the set of query results returned
by the algorithm. Query efficiency was evaluated using two metrics: (1) the number of distance

computations (NDC), which dominates the overall search cost and provides a platform-independent

measure of efficiency; (2) the number of hops, defined as the number of hop vertices (search steps)

visited by the search algorithm. For each dataset, we recorded the average recall@100, average

NDC, and average number of hops of all provided queries.

5.2 Search Performance

Table 3. Speedups of our 𝛼-CNG in NDC and # hops over the best-performing baseline (in bold). For each
dataset, all methods reached the same recall@100, i.e., 0.99 for SIFT and LAION-I2I, 0.95 for GIST at 0.95,
and 0.90 for WIKI, CRAWL, and MSONG.

NDC # Hops

Method SIFT CRAWL WIKI MSONG LAION-I2I GIST SIFT CRAWL WIKI MSONG LAION-I2I GIST

HNSW 4224 10284 5204 12365 N/A 8179 171 190 244 315 N/A 281

Vamana 4373 9286 4966 13150 11523 8177 166 172 223 281 810 232

NSG 3903 14837 4731 18289 10297 7677 175 233 210 456 904 272

𝜏-MNG 3842 10599 4556 14402 13776 6971 177 239 189 319 1004 199
𝛼-CNG 3911 4067 4166 10438 6829 6024 143 102 124 167 282 137

Speedup 0.98x 2.28x 1.09x 1.18x 1.51x 1.16x 1.16x 1.69x 1.52x 1.68x 2.88x 1.45x

Recall vs. NDC.We first assessed the trade-off between (average) recall and (average) NDC on the

six datasets at the 1M scale. Figure 4 reports the results obtained by varying the queue size 𝐿 of

beam search. Our 𝛼-CNG outperformed all baselines, achieving higher recall with fewer NDCs. The

only exception is the SIFT dataset, for which all methods exhibited strong performance due to its

low intrinsic dimensionality [56]. Fixed-𝛼-CNG also surpassed the four baselines, except on MSONG,
but was outperformed by 𝛼-CNG.
To provide a more detailed comparison, we report the NDC and number of hops at fixed re-

call@100 levels in Table 3. We configure different recall levels for the datasets based on their query

performance in Figure 4, i.e., 0.99 for easy datasets SIFT and LAION-I2I, 0.95 for GIST, and 0.90 for
difficult datasets CRAWL, WIKI, and MSONG. As shown in Table 3, our 𝛼-CNG reduces NDC by over

15% compared to the best-performing baseline on four out of the six datasets, and the maximum

speedup can be 2.28x. We also observe that none of the baselines consistently outperformed the

others, making our 𝛼-CNG a good choice due to its consistently good performance across different

datasets.

Recall vs. # hops. We next evaluated the (average) number of hops by varying 𝐿. Figure 5 shows

that 𝛼-CNG substantially reduced the number of hops across all datasets, and Fixed-𝛼-CNG also
outperformed the baselines on most datasets. Table 3 confirms that the reductions in the number of

hops over the best-performing baseline are substantial: exceeding 45% on five out of the six datasets,
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Fig. 4. Recall@100 vs. NDC
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Fig. 5. Recall@100 vs. number of hops

with a maximum speedup of 2.88x. These gains arise from two key factors: 𝛼-CNG approximates 𝛼-

CG for faster convergence, and our adaptive pruning strategy preserves more long-distance shortcut

edges, effectively reducing the number of hops. The reduced hops of 𝛼-CNG are advantageous for

disk-based [62] or distributed deployments of PGs, where hops correspond to I/O operations.

Scalability. Finally, we tested the scalability of all competing methods on the 100M-scale datasets

(see Figure 6). Although the improvements in NDC are less pronounced than those observed at 1M-

scale, 𝛼-CNG consistently outperformed all baselines, and Fixed-𝛼-CNG matched the best baseline.

Both our variants significantly reduced the number of hops (over 40% when recall@100=0.98),

demonstrating that our methods converge quickly on large-scale datasets.

5.3 Effect of Parameters
This subsection explores the effects of 𝜏 and 𝛼 in our edge pruning rule (Definition 3). We evaluated

Fixed-𝛼-CNG on three 1M-scale datasets with the highest dimensionality from different data types:

WIKI for text, MSONG for audio, and GIST for images.
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Fig. 6. Recall@100 vs. NDC and Recall@100 vs. # hops on 100M-scale datasets
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Fig. 7. Recall@100 vs. NDC with varying 𝜏
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Fig. 8. Recall@100 vs. NDC with varying 𝛼

Varying 𝜏 . Figure 7 illustrates the impact of the parameter 𝜏 on search performance, where the

middle tested 𝜏 for each dataset is the optimal 𝜏 identified. We observe a trend similar to that

reported for 𝜏-MNG [56]: as 𝜏 increases from zero, search performance initially improves before

deteriorating with further increases in 𝜏 . Recall that the search time is proportional to the total

out-degrees of the hop vertices. A moderate increase in 𝜏 allows connecting more candidates

and enhances the graph connectivity, thus reducing the number of hops. However, if 𝜏 increases

excessively, the out-degree may become too large, as the search must compute distances for more

neighbors at each step. Additionally, the increased out-degrees may exceed the limit𝑀 for some

nodes, resulting in the replacement of long-distance shortcut edges with less useful ones. Overall, a

small positive 𝜏 enhances graph connectivity and improves search performance, while excessively

large values can lead to over-inclusion and reduced pruning effectiveness.

Varying 𝛼 . We evaluated Fixed-𝛼-CNG for three values of 𝛼 , along with 𝛼-CNG (see Figure 8). The

middle 𝛼 value tested is the optimal value chosen for Fixed-𝛼-CNG. We observe that increasing 𝛼
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initially enhances the performance of Fixed-𝛼-CNG, but it deteriorates as 𝛼 continues to rise, for

the same reasons observed with increasing 𝜏 . Notably, 𝛼-CNG outperformed Fixed-𝛼-CNG for all
tested 𝛼 values. This advantage stems from its capability to locally adjust 𝛼 , allowing each node to

retain more shortcut edges while ensuring that its degree does not exceed𝑀 . Overall, 𝛼-CNG proves
to be more practical, as it avoids the need for manual tuning of the parameter 𝛼 while delivering

improved query performance.

5.4 Construction Performance
Table 4. Index construction time and index size across six datasets.

Index time (secs) Index size (MB)

Method SIFT CRAWL WIKI MSONG LAION-I2I GIST SIFT CRAWL WIKI MSONG LAION-I2I GIST

HNSW 42 159 91 145 116 206 256 509 256 254 256 256

Vamana 9 43 19 38 35 67 163 409 114 151 134 118

NSG 43 174 97 223 93 200 115 183 113 97 83 90

𝜏-MNG 43 182 98 242 98 217 113 329 124 117 127 131

Fixed-𝛼-CNG 42 206 88 215 99 207 158 512 179 203 186 162

𝛼-CNG 53 221 119 227 110 228 188 563 228 225 246 227

Vector Data Size – 492 2284 1464 1597 2908 3666

Index time.Table 4 compares indexing times. Both ourmethods,𝛼-CNG and Fixed-𝛼-CNG, achieved
performance comparable to that of baseline methods, except for Vamana. Compared to Vamana,
our methods employ approximate 𝐾-NN graphs for candidate generation and a relaxed edge

pruning rule that preserves more shortcut edges. This enhances graph connectivity, improving

query performance as shown in Figure 4.

We further observe the following regarding our two methods: (1) Although using a more relaxed

pruning, Fixed-𝛼-CNG exhibited index times comparable to NSG and 𝜏-MNG, and occasionally outper-
formed them. This efficiency stems from our lazy pruning strategy during backward edge insertion,

reducing invocations of the pruning procedure. (2) Despite 𝛼-CNG iteratively pruning candidate

sets for multiple 𝛼 values, its index time remains only marginally higher than Fixed-𝛼-CNG. This is
due to our distance-reusing mechanism that optimizes the total number of distance computations.

Index Size. Table 4 presents the sizes of the indexes and the corresponding raw vector data. The

index sizes of our methods are comparable to those of HNSW but larger than the other baselines.

This is because we retain additional long-distance shortcut edges to accelerate the convergence to

ANN and enhance query performance, as validated in Section 5.2. Since the PGs are usually much

smaller than the raw vectors, our methods yield only a marginal increase in the overall data size.

5.5 Effectiveness of Our Edge Pruning Rule
Our two methods, NSG, and 𝜏-MNG, share a framework that generates candidate sets from approxi-

mate 𝐾-NN graphs. Section 5.2 shows the efficacy of our pruning rule (Definition 3) within this

framework. We further evaluated its effectiveness on two widely used PGs — HNSW and Vamana —
by creating two variants, HNSW+ and Vamana+, through the integration of our edge pruning rule.

Figure 9 presents the recall-NDC trade-offs, with 𝛼-CNG included for reference. Both HNSW+ and
Vamana+ consistently outperformed their original counterparts. HNSW+ achieved more substantial

gains over HNSW and even surpassed 𝛼-CNG on MSONG. We attribute this difference to the distinct

pruning strategies used by Vamana and HNSW: Vamana employs a more relaxed pruning rule by

setting 𝑟 = 𝛿 (𝑝,𝑢)/𝛼 (Fig. 1b), which incorporates the parameter 𝛼 , while HNSW uses the strict

pruning rule with 𝑟 = 𝛿 (𝑝,𝑢) (Fig. 1a). These experimental results demonstrate the transferability

of our edge pruning rule to enhance the query performance of other PG solutions.
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Fig. 9. Effect of integrating our edge pruning rule into HNSW and Vamana

Although 𝛼-CNG, HNSW+, and Vamana+ share the same 𝛼-pruning rule, 𝛼-CNG still achieves better

performance because it constructs candidate neighbor sets of higher quality. Specifically, 𝛼-CNG first
builds a𝐾-NN graph and performs edge pruning over approximate nearest neighbors obtained from

that graph. In contrast, HNSW+ and Vamana+ incrementally insert nodes, so each node can only access

neighbors that have already been inserted, leading to a limited and often suboptimal candidate

set for pruning. Consequently, the edges retained by 𝛼-CNG better preserve global connectivity,

resulting in higher recall and more efficient search.

6 Related Work
Approximate nearest neighbor (ANN) search has attracted considerable attention over the past

two decades, leading to the development of diverse methodologies aimed at enhancing search

performance. Recent experimental studies [3, 5, 45, 46, 68] indicate that PG-based approaches

surpass other techniques, including hash-based methods [33, 34, 47, 49, 63, 64, 70], tree-based

methods [8, 13, 40, 44, 65, 74], and inverted index-based methods [6, 39].

PG-based methods. The Delaunay Graph (DG) [4], one of the earliest PGs, is the dual graph of

the Voronoi diagram with 𝑂 (𝑛⌈𝑚/2⌉) space in the𝑚-dimensional space. DG guarantees finding the

exact NN but suffers from high out-degrees and unbounded search time.

Several PGs in the literature provide non-trivial query accuracy guarantees while maintaining

graph sparsity. Inspired by the relative neighborhood graph [38], Arya et al. [2] and Fu et al. [22]

proposed MRNG. However, it can find the exact NN only when 𝑞 ∈ 𝑃 . Fu et al. [21] introduced the

satellite system graph (SSG) to support the case when 𝑞 ∉ 𝑃 and the input is randomly distributed,

although the worst-case time remains unbounded. Harwood et al. [31] studied the scenario when

𝛿 (𝑞, 𝑣∗) is at most a constant 𝜏 > 0; when 𝑃 is uniformly drawn from R𝑚
, their PG can find the

exact NN in 𝑂 (𝑛2/𝑚 (ln𝑛)2) time. Later, 𝜏-MNG [56] improved the search time to 𝑂 (𝑛1/𝑚 (ln𝑛)2).
Recently, Indyk et al. proved that the slow preprocessing version of Vamana guarantees to find an

( 𝛼+1

𝛼−1
+ 𝜖)-ANN of 𝑞 in 𝑂 (𝛼𝑑 · logΔ · log𝛼

Δ
(𝛼−1)𝜖 ) time, regardless of whether 𝛿 (𝑞, 𝑣∗) ≤ 𝜏 . Refer to

other theoretical works studying cases where 𝑞 ∈ 𝑃 [17] or the data follows specific distributions

[43, 58].

The worst-case construction time of all the aforementioned PGs is Ω(𝑛2). To reduce construction
time, numerous practical PGs have been proposed in the literature (see [14, 22, 24, 27, 31, 48, 50,

56, 62, 67, 73, 75, 76] and the references therein). A recent survey by Azizi et al. [5] identifies

several design paradigms for PGs and indicates that neighbor selection (Definition 2) is crucial

for improving search performance, warranting further theoretical exploration. This paper aims to

contribute to the understanding of this direction.
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Additional directions. Research has explored methods to extend ANN search by incorporating

attribute constraints, enabling data retrieval that satisfies both vector similarity and user-specified

attributes [12, 26, 55, 66, 72, 77]. Other studies have focused on the efficient construction of PGs

[18, 53, 73, 76] and on supporting updates [61, 69, 71]. Recently, quantization-based techniques [1,

23, 25, 28, 39, 54] have been developed to compress high-dimensional vectors, thereby accelerating

distance computations. These techniques can be integrated into PGs to enhance both construction

and search efficiency, as investigated in recent research [27, 61].

7 Conclusions
This paper introduces 𝛼-CG, a new PG structure for high-performance ANN search. Specifically,

𝛼-CG employs a well-designed pruning rule to eliminate ineffective candidates. We prove that,

under a realistic assumption that the distance between the query and its NN is bounded by a

constant 𝜏 , 𝛼-CG guarantees exact NN retrieval in poly-logarithmic time. Without this assumption,

it ensures ANN search within the same complexity bounds. To reduce graph construction overhead,

we develop an approximate variant 𝛼-CNGwith an adaptive local pruning rule that avoids manually

tuning the parameter 𝛼 and preserves more useful shortcut edges. We also propose optimizations

to accelerate graph construction further. Empirical results show 𝛼-CNG consistently outperforms

state-of-the-art PG methods, achieving superior accuracy-efficiency trade-offs. Furthermore, our

edge pruning rule demonstrates transferability, enhancing query performance when integrated

into other popular PGs.
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