
Interactive Graph Search Made Simple
SHANGQI LU, Hong Kong University of Science and Technology (Guangzhou), China

RU WANG, The Chinese University of Hong Kong, China

YUFEI TAO, The Chinese University of Hong Kong, China

Interactive graph search (IGS) has proven to be a useful information retrieval paradigm in a diverse set of

applications. Robust IGS algorithms are notoriously difficult to design because they are deeply rooted in graph

theory. The current state-of-the-art algorithms either fail to achieve an optimal number of interaction rounds

or rely on interfaces demanding tedious user inputs. Furthermore, previous research has paid little attention

to the underlying computation bottleneck, which is currently dealt with using primitive implementations.

This work remedies the above issues altogether. Utilizing novel findings on the problem characteristics, we

develop an algorithmic framework for IGS that requires a designer to fill in the details for only two “black-box”

operations. Our framework, when instantiated with surprisingly simple black-box implementations, yields

optimal algorithms not only in all the scenarios explored before but also in new scenarios never studied. We

accompany our framework, designed to minimize interaction rounds, with a new algorithm designed to reduce

the CPU time complexity significantly. Extensive experiments on both real and synthetic data confirm both

the efficacy and efficiency of the proposed techniques.
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1 Introduction
Interactive graph search (IGS), introduced in [22], is an iterative questioning procedure between

an algorithm and an adversary, known as the oracle. The procedure operates on a directed acyclic

graph (DAG)𝐺 = (𝑉 , 𝐸) with a single root (i.e., a vertex with no incoming edges). At the outset, the

oracle selects an arbitrary vertex 𝑡 ∈ 𝑉 to serve as the target. The algorithm’s task is to identify this

target by issuing queries to the oracle repeatedly. In each query, the algorithm chooses a vertex 𝑢

and inquires: can 𝑢 reach 𝑡 , or equivalently, is there a path from 𝑢 to 𝑡 within𝐺? The oracle responds
with either yes or no. The algorithm can continue querying until the target is found. Its cost is
defined as the total number of queries made.

The procedure of IGS models practical situations where the goal is to uncover a hidden target

vertex 𝑡 in a DAG, with the main action available being to pick a vertex 𝑢 from the graph and

examine it against a reachability-consistent predicate — meaning a condition that holds true if

and only if 𝑢 can reach 𝑡 . This search paradigm emerges in diverse scenarios including image

categorization [19], causal analysis in machine learning [10], distributed file systems [18], software

Authors’ Contact Information: Shangqi Lu, shangqilu@hkust-gz.edu.cn, Hong Kong University of Science and Technology

(Guangzhou), Guangzhou, China; Ru Wang, rwang21@cse.cuhk.edu.hk, The Chinese University of Hong Kong, Hong Kong,

China; Yufei Tao, taoyf@cse.cuhk.edu.hk, The Chinese University of Hong Kong, Hong Kong, China.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2836-6573/2025/6-ART177

https://doi.org/10.1145/3725409

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 177. Publication date: June 2025.

https://doi.org/10.1145/3725409
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3725409


177:2 Lu et al.

animal

mammal oviparous

tiger whale

aquatic

vehicle

car

nissan honda mercedes

Fig. 1. IGS for image categorization (adapted from [19, 22])

testing [2], and even the design of new data structures [16]. These multifaceted applications have

generated significant research interest in IGS in recent years [3, 4, 14–16, 22, 25, 26].

For a concrete discussion, let us revisit a well-known image categorization scenario from [19].

Machine learning research often requires images annotated by humans using labels chosen from a

sophisticated hierarchy of concepts. Figure 1 shows a portion of such a hierarchy where the label

of a node 𝑢 is a generalization of the label of any node that can be reached from 𝑢. The objective is

to assign the most specific label to a given image. For this purpose, an algorithm selects a node 𝑢

with label 𝒙 and asks a human: is the image an 𝒙? The human acts as the oracle, and interestingly,

even though the human did not choose the target, s/he can still provide a correct answer with

ease. For example, consider an image of a tiger. A clever algorithm would pick the nodes vehicle,
mammal, and tiger (in this order) and, after receiving the human’s answers “no”, “yes”, and “yes”,

can correctly identify the target tiger as the most informative label.

The number of queries, however, can be rather large, e.g., the experiments of [16] showed that

the number can reach several hundred on real data. This poses a serious issue because a high cost

demands a lengthy sequence of interaction rounds that could challenge the composure of even the

most patient human annotator. A common approach to address the issue is to allow each query to

solicit reachability information for multiple vertices. Specifically, each query now presents a set

𝑄 of 𝑘 vertices from 𝑉 . For each vertex 𝑢 ∈ 𝑄 , the oracle reveals whether 𝑢 can reach the target

𝑡 . In Figure 1, for example, a query of 𝑘 = 3 would specify 𝑄 = {vehicle, mammal, tiger}. Upon
acquiring human answers {no, yes, yes}, an algorithm can pinpoint the target tiger with cost 1.

This was exactly the version of IGS initially proposed by Tao et al. [22]. Today, the problem has

been resolved optimally. Lu et al. [15, 16] developed an algorithm that guarantees locating the

target in 𝑂 (log𝑘 𝑛 + (𝑑/𝑘) log𝑑 𝑛) queries, where 𝑛 = |𝑉 | and 𝑑 is the maximum vertex out-degree

in 𝐺 . Furthermore, they also proved that this cost is asymptotically optimal in the worst case.

Nevertheless, the above oracle — called the classical oracle in the literature — also suffers from

a drawback: it is not user-friendly because it requires a human to provide too many answers. When

𝑘 increases, answering a query soon becomes burdensome because the human would need to click

on many (up to 𝑘) buttons. This is problematic, considering that effectively reducing the number

of interaction rounds calls for large values of 𝑘 . Motivated by this, Lu et al. [16] introduced the

notion of one-click oracles, which require the human to click on only one button per query. They

formulated such an oracle — aptly named the taciturn oracle — which (like the classical oracle)

still accepts a set 𝑄 of 𝑘 vertices, but (unlike the classical oracle) provides only a binary answer:

whether 𝑄 has at least one vertex capable of reaching the target. For example, in Figure 1, given

a query 𝑄 = {vehicle, mammal, tiger}, the taciturn oracle would just respond “yes”, without

indicating which vertices in 𝑄 can reach the target. For this new oracle, Lu et al. [16] described an

algorithm that finds the target with 𝑂 (log𝑛 · log𝑘 + (𝑑/𝑘) log𝑑 𝑛) queries. Note that this is more

expensive than how many iterations can be promised by the classical oracle because the taciturn

oracle is weaker in power.
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1.1 Motivation
Unlike its counterpart under the classical oracle, IGS under the taciturn oracle has not been

optimally solved. However, it is known [16] that the query cost for the taciturn oracle must be

Ω(log𝑛 + (𝑑/𝑘) log𝑑 𝑛) in the worst case, implying that the algorithm of [16] can be unnecessarily

slow by a log𝑘 factor (e.g., when 𝑘 ≥ 𝑑). Closing this gap was left as an open problem in [16]. We

will settle the open prolem in this work.

There is a more fundamental issue from a methodological point of view. The above lower bound

rules out the possibility of using the taciturn oracle to guarantee as few iterations as the classical

oracle. Indeed, the cost 𝑂 (log𝑘 𝑛 + (𝑑/𝑘) log𝑑 𝑛) for the classical oracle is strictly lower than the

best possible performance Ω(log𝑛 + (𝑑/𝑘) log𝑑 𝑛) of the taciturn oracle. Is it possible to “combine

the best of both worlds”? More specifically, can we discover another one-click oracle that (i)

requires a human to click on one button per query and (ii) permits locating any target within

𝑂 (log𝑘 𝑛+ (𝑑/𝑘) log𝑑 𝑛) queries? In this work, we will design a new oracle that offers an affirmative

answer to the question.

Our final motivation stems from the somewhat surprising fact that previous work has not

given due attention to CPU time. All the modern IGS algorithms rely on the so-called heavy-path
depth first search (HPDFS) tree. Introduced in [22], this is a tree produced by a non-conventional

depth-first search (DFS) — as will be reviewed in the next section — on the input DAG 𝐺 = (𝑉 , 𝐸)
whose efficient computation is non-trivial. The fastest algorithm to this date requires 𝑂 (𝑑𝑛𝑚) time

[22], where𝑚 = |𝐸 |. In this work, we will provide a new algorithm to drastically reduce the time

complexity.

1.2 Contributions
Our first contribution is an algorithmic framework that significantly simplifies the design of IGS

algorithms. To apply our framework, one only needs to concentrate on two operations:

• Existence(𝑄): given a set 𝑄 of 𝑘 vertices, return a binary answer indicating whether 𝑄 has

at least one vertex capable of reaching the target.

• First-in-Order(𝑄): given a sequence 𝑄 of 𝑘 vertices, return the first vertex in 𝑄 able to

reach the target, or “none” if no vertex in 𝑄 can do so.

The astute reader would notice that Existence(𝑄) is subsumed by First-in-Order(𝑄) in
functionality — so why do we need both? The answer lies in the fact that (i) our framework invokes

the former operation more frequently than the latter, but (ii) the former may be cheaper than the

latter. Indeed, the core of algorithm design is now reduced to figuring out how to leverage the

given oracle to implement the two operations. If the first operation can be supported with cost

𝑇𝐸 and the second operation can be supported with cost 𝑇𝐹 , our framework automatically yields a

concrete IGS algorithm with cost 𝑂 (log𝑘 𝑛 · (𝑇𝐸 +𝑇𝐹 ) +𝑇𝐸 · (𝑑/𝑘) log𝑑 𝑛).
With our framework in place, deriving IGS algorithms for various oracles becomes much easier.

Consider the classical oracle first. As the oracle reveals the reachability (to the target) for every

vertex of𝑄 , it trivially supports both operations with costs𝑇𝐸 = 𝑇𝐹 = 1. Accordingly, our framework

achieves cost 𝑂 (log𝑘 𝑛 + (𝑑/𝑘) log𝑑 𝑛), which matches the state of the art in [16].

Now, let us think about the taciturn oracle. First of all, the oracle does precisely what is needed

for Existence(𝑄), giving𝑇𝐸 = 1. Furthermore, we can use the oracle to handle First-in-Order(𝑄)
with binary search. Specifically, let𝑄1 (resp.,𝑄2) be the sequence of the first (resp., last) 𝑘/2 vertices

in 𝑄 . Invoke the oracle to detect whether 𝑄1 has a vertex that can reach the target. If so, recurse on

𝑄1; otherwise, recurse on 𝑄2. This ensures 𝑇𝐹 = log
2
(1 + 𝑘). Accordingly, our framework yields an

algorithm with cost 𝑂 (log𝑛 + (𝑑/𝑘) log𝑑 𝑛). This is asymptotically optimal, strictly improves the

state of the art [16], and closes the gap left behind by [16].
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Finally, our framework naturally suggests a novel oracle:

First-in-order (FIO) oracle: given a sequence𝑄 of 𝑘 vertices, the oracle returns the first

vertex in 𝑄 able to reach the target, or “none” if no vertex in 𝑄 can do so.

This is another one-click oracle. For example, in the scenario of Figure 1, when given the sequence

𝑄 = (vehicle, mammal, tiger) and a picture of tiger, the human will click on mammal (i.e., the first

applicable label in the sequence). Let us analyze the number of iterations that can be guaranteed by

the FIO oracle. Clearly, the oracle does exactly what First-in-Order demands, meaning 𝑇𝐹 = 1. To

support Existence(𝑄), one may order𝑄 into an arbitrary permutation𝑄 and then invoke the oracle.

The output for the operation is “yes” if and only if the oracle returns a vertex in𝑄 . Hence,𝑇𝐸 is also

1. As a result, our framework yields an IGS algorithm with cost 𝑂 (log𝑘 𝑛 + (𝑑/𝑘) log𝑑 𝑛), which
asymptotically matches the number of iterations that the classical oracle can ensure. Compared

with the classical oracle, the FIO oracle reduces the mental effort because a human can now stop

processing the given sequence once s/he sees the leftmost applicable option. With this, we combine

the best of both worlds.

Our second contribution is a fast algorithm for computing the HPDFS tree. The novelty behind

our algorithm is to cut the input graph 𝐺 = (𝑉 , 𝐸) into disjoint components using “bridges”.

Specifically, a bridge is an edge whose removal disconnects 𝐺 into two disconnected subgraphs. By

removing all the bridges from𝐺 , we decompose𝐺 into a set of subgraphs such that no edge exists

between any two subgraphs. If Δ denotes the largest number of edges in a subgraph, our algorithm

computes the HPDFS-tree in 𝑂 (𝑚 + 𝑛 · Δ) time. In practice, the input graphs in IGS applications

are sparse such that Δ is far less than𝑚. Under such circumstances, our algorithm significantly

improves the time complexity 𝑂 (𝑑𝑛𝑚) of the current method.

We present a thorough empirical evaluation of (i) the existing and the proposed IGS algorithms

and (ii) our new HPDFS computation algorithm. In all the scenarios inspected, the proposed

IGS algorithms consistently outperform the existing ones; furthermore, our HPDFS algorithm

is considerably (over an order of magnitude) faster than the existing implementations. Given

the prevalence of large language models (LLMs), the last part of our experiments explores the

potentials of integrating LLMs with IGS. We find that LLM-only methods exhibit low accuracy

in identifying target nodes, indicating that the IGS algorithms in this paper are not subsumed by

LLMs. Nevertheless, we demonstrate how LLMs can be used to reduce the amount of human effort

needed by our IGS algorithms.

2 Preliminaries
This section will present a self-contained tutorial on the key concepts relevant to our technical

discussion. Our examples will use the DAG𝐺 = (𝑉 , 𝐸) in Figure 2 where 𝑉 has 23 vertices and 𝐸

includes all the solid and dashed edges. Vertex 1, which can reach every other vertex in the graph,

is the root of 𝐺 .

HPDFS-Trees. Depth first search (DFS) performs graph traversal using a stack. The algorithm

pushes each vertex into the stack once and then pops it out once. The root of 𝐺 is the first vertex

entering the stack. At each step, if vertex 𝑢 currently tops the stack, the algorithm looks for an

out-neighbor 𝑣 of 𝑢 such that 𝑣 has never been seen before. If such a vertex 𝑣 exists, it is discovered
because of 𝑢 and is pushed into the stack. Otherwise, the algorithm pops 𝑢 from the stack, and

continues until the stack is empty. It is customary to use three colors to represent the status of each

vertex: (i) white, if the vertex has not been discovered; (ii) gray, if the vertex has been seen and

remains in the stack; (iii) black, if the vertex has been popped from the stack.
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Fig. 2. A running example (solid edges make the HPDFS-tree, and the gray vertices make a 4-separator)

In traditional DFS, the vertex 𝑣 discovered next can be an arbitrary white (i.e., unseen) out-

neighbor of the vertex 𝑢 that tops the stack. However, to compute a heavy-path depth-first search

(HPDFS) tree — to be formalized shortly — we must choose 𝑣 as the white out-neighbor of 𝑢 having

the highest wr-count (where “wr” means white reachability), defined as follows.

Definition 1. The wr-count of a vertex 𝑣 is the current number of white vertices that 𝑣 can reach
by going through only white vertices.

Consider the graph 𝐺 in Figure 2. In the beginning, the stack has only vertex 1, which is the

only gray vertex, with all the other vertices being white. At this moment, the wr-count of vertex 2

equals 12 because it can reach vertices 2-13. Similarly, the wr-count of vertex 14 is 10 (it can reach

vertices 11 and 14-22), and that of vertex 23 is 2 (it can reach vertex 21 and itself). Hence, vertex 2

is now discovered and enters the stack. Next, the algorithm pushes vertex 3 (with wr-count 7) into

the stack, followed by vertices 4 and 5. Then, the algorithm pops vertex 5, pushes and then pops

vertex 6, and pops out vertex 4. At this moment, vertices 4-6 are black, and the stack — from bottom

to top — is (vertex) 1, 2, 3. Vertex 3 now has two white out-neighbors: vertex 7 whose wr-count is 2

(note that vertex 6 is black so does not contribute to the count), and vertex 9 whose wr-count is 1.

Thus, vertex 7 is discovered next. The algorithm then continues in the same fashion.

We refer to the above special version of DFS as HPDFS.

Definition 2. The HPDFS-tree of 𝐺 is a tree where (i) the root is the root vertex of 𝐺 and (ii) a
vertex 𝑢 parents vertex 𝑣 if 𝑣 is discovered because of 𝑢 during HPDFS.

Definition 3. A vertex 𝑣 has HPDFS-order 𝑟 if it is the 𝑟 -th vertex discovered during HPDFS.

The solid edges shown in Figure 2 constitute the HPDFS-tree of our example DAG, while the

vertex labels indicate the HPDFS-orders. For convenience, we order the children of every internal

node from left to right in ascending order of HPDFS-order.

The HPDFS-tree is not easy to compute. The challenge is that every time a vertex is discovered,

the wr-counts of many vertices may be affected. The fastest implementation today [22] re-computes,

at each step of HPDFS, the wr-count for every white out-neighbor of the vertex 𝑢top currently at the

top of the stack. As each wr-count takes 𝑂 (𝑚) time to compute and 𝑢top has up to 𝑑 out-neighbors,

each step incurs an overhead of 𝑂 (𝑑 ·𝑚) time. As the total number of steps is 𝑛 = |𝑉 | (there are 𝑛
vertices to “discover”), the overall time complexity is 𝑂 (𝑑𝑛𝑚).

Tree Separators, Left Flanks, and Stars. Henceforth, we will use 𝑇 to denote the HPDFS-tree of

𝐺 = (𝑉 , 𝐸).
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Definition 4. For an integer 𝑘 ∈ [1, 𝑛], a set Σ of vertices in the HPDFS-tree 𝑇 is a 𝒌-separator
of 𝑇 if (i) Σ includes the root of 𝑇 , and (ii) removing the vertices of Σ (and their edges) disconnects 𝑇
into connected components, each of which has at most ⌊𝑛/𝑘⌋ vertices, where 𝑛 = |𝑉 |.
Lu et al. [16] proved that 𝑇 always admits a 𝑘-separator containing at most 𝑘 vertices, and this

𝑘-separator can be computed in 𝑂 (𝑛) time. In Figure 2, the gray vertices 1, 3, and 14 constitute a

4-separator returned by their algorithm. Indeed, removing the three vertices breaks𝑇 into connected

components, the largest of which has only ⌊23/4⌋ = 5 vertices.

Definition 5. Let 𝑢 be a vertex in the HPDFS-tree 𝑇 . The left flank of 𝑢 — denoted as LF(𝑢) — is
a set that includes the left siblings of every ancestor of 𝑢 in 𝑇 .

The reader should note that (i) a node is as an ancestor of itself (as a convention in graph theory),

and (ii) a node can have multiple left siblings. For example, in Figure 2, both vertices 2 and 14 are

left siblings of vertex 23, giving LF(23) = {2, 14}, where each number represents a vertex ID. As

additional examples, LF(1) = ∅, LF(9) = {4, 7}, LF(18) = {2, 16}, and LF(22) = {2, 15, 20}.
Lu et al. [16] proved an interesting property of left flanks for HPDFS-trees. Let Σ be a 𝑘-separator

of the HPDFS-tree 𝑇 computed using their linear-time algorithm. Then, for any vertex 𝑢 ∈ Σ, the
size of LF(𝑢) must be less than 𝑘 . In Figure 2, as noted, Σ = {1, 3, 14} is a 4-separator. We have:

LF(1) = LF(3) = ∅, while LF(14) = {2}. Clearly, all of them have sizes less than 4.

Definition 6. Let 𝑇 be the HPDFS-tree, and fix a target vertex 𝑡 ∈ 𝑉 . For any subset 𝑆 ⊆ 𝑉 , its
star on 𝑡 is the vertex 𝑢 ∈ 𝑆 satisfying:
(1) 𝑢 can reach 𝑡 ;
(2) no proper descendent of 𝑢 in 𝑆 can reach 𝑡 ;
(3) 𝑢 has the smallest HPDFS-order among all the vertices in 𝑆 satisfying conditions (1) and (2).

In Figure 2, consider 𝑆 = {1, 3, 14, 23} and the target 𝑡 is vertex 21. Vertex 3 violates condition (1).

Vertex 1 satisfies (1), but violates (2) because it has a proper descendent — vertex 14 — that can

reach 𝑡 . Both vertices 14 and 23 satisfy conditions (1) and (2), but 14 has a smaller HPDFS-order. It

follows that the star of 𝑆 is 14.

3 A Generic IGS Algorithmic Framework
This section will describe our algorithmic framework for IGS. In Section 3.1, we will present two

new observations about the notion of star defined in Section 2. Section 3.2 will review how IGS can

be solved using the classical oracle, after which Section 3.3 will utilize our observations to develop

an alternative IGS algorithm. Finally, in Section 3.4, we will provide an information-theoretic view

on the inherent differences among different oracles.

3.1 New Properties of Stars
Let 𝐺 = (𝑉 , 𝐸) be the input DAG on which IGS is performed. Denote by 𝑇 the HPDFS-tree of 𝐺

from Definition 2. Echoing the HPDFS-order in Definition 3, next we introduce its “opposite”:

Definition 7. Suppose that, for each internal node in 𝑇 , its child nodes have been arranged (from
left to right) in ascending order of their HPDFS-orders. Then, the HPDFS-post-order of a vertex
𝑢 ∈ 𝑉 is 𝑟 if 𝑢 is the 𝑟 -th vertex visited in a post-order traversal of 𝑇 .

Recall that a post-order traversal recursively visits the 𝑖-th subtree of the root (with a post-order

traversal) — in ascending order of 𝑖 — before visiting the root. In Figure 2, a post-order traversal of

the HPDFS-tree there lists vertices in this order: 5, 6, 4, 8, 7, 9, 3, 11, 10, 12, 13, 2, 17, 16, 18, 15, 21,

20, 22, 19, 14, 23, 1. The HPDFS-post-order of vertex 5, for instance, is 1, while that of vertex 11 is 8.

We are now ready to state our first observation:

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 177. Publication date: June 2025.



Interactive Graph Search Made Simple 177:7

Lemma 1. Fix an arbitrary target 𝑡 ∈ 𝑉 . For any subset 𝑆 ⊆ 𝑉 , its star on 𝑡 (Definition 6) is the
vertex in 𝑆 with the smallest HPDFS-post-order among those vertices in 𝑆 able to reach 𝑡 .

Proof. To start with, note that, by enumerating the vertices of 𝑇 in ascending order of HPDFS-

order, one essentially performs a pre-order traversal of 𝑇 . Recall that a pre-order traversal first

visits the root, and then recursively visits the 𝑖-th subtree of the root with a pre-order traversal, in

ascending order of 𝑖 .

Denote by 𝑠∗ the star of 𝑆 on 𝑡 . Let 𝑢 be the vertex in 𝑆 having the smallest HPDFS-post-order

among those vertices in 𝑆 able to reach 𝑡 . If 𝑠∗ = 𝑢, we are done.
Next, we assume 𝑠∗ ≠ 𝑢. By definition of star, no proper descendent of 𝑠∗ can reach 𝑡 ; hence, 𝑢

cannot be a proper descendent of 𝑠∗. On the other hand, as 𝑢 has a smaller HPDFS-post-order than

𝑠∗, it follows that 𝑢 cannot be a proper ancestor of 𝑠∗, either. In general, in any rooted tree, for two

nodes without an ancestor-descendent relationship, the node with a smaller pre-order always has a

smaller post-order. This means that node 𝑢 must have a smaller HPDFS-order than 𝑠∗. However, in
this case, 𝑠∗ cannot satisfy condition (3) of Definition 6, giving a contradiction. □

As an illustration, consider the example of Figure 2 with 𝑆 = {1, 3, 14, 23} and the target 𝑡 = 21.

As mentioned in Section 2, the star of 𝑆 on 𝑡 is vertex 14. The above lemma offers a convenient way

to derive this. First, notice that vertices 1, 14, and 23 are the only ones in 𝑆 that can reach 𝑡 = 21.

Second, among those three vertices, 14 has the smallest HPDFS-post-order.

Our second observation has nothing to do with vertex ordering and is concerned with the specific

subset 𝑆 = 𝑉 :

Lemma 2. When 𝑆 = 𝑉 , the star of 𝑆 on 𝑡 is just the target 𝑡 .

Proof. Suppose that 𝑡 is not the star. But why? Clearly, 𝑡 satisfies condition (1) of Definition 6.

Furthermore, it also satisfies condition (2), because otherwise there would be a cycle in the input

graph 𝐺 . Thus, 𝑡 must violate condition (3), implying the existence of a node 𝑢 that can reach 𝑡 ,

does not have 𝑡 as a proper descendent in 𝑇 , and has a smaller HPDFS-order than 𝑡 . However, this

is impossible because the tree 𝑇 has the following property (proved in [16]): if a node 𝑣1 has a

smaller HPDFS-order than another node 𝑣2 but 𝑣2 is not a proper descendent of 𝑣1 in 𝑇 , then 𝑣1

cannot reach (in 𝐺) any vertex in the subtree of 𝑣2 in 𝑇 . Indeed, setting 𝑣1 = 𝑢 and 𝑣2 = 𝑡 violates

the property. □

To “play with” the lemma, the reader may resort to Figure 2 and verify that, for any target 𝑡

there, the star of 𝑉 on 𝑡 is always 𝑡 .

3.2 The Classical Oracle
Recall that, given a set 𝑄 of 𝑘 vertices, the classical oracle reveals for each vertex 𝑢 ∈ 𝑄 whether 𝑢

can reach the target 𝑡 . Next, we describe an algorithm of Lu et al. [16] — referred to as the LMNT
algorithm following the authors’ initials — that uses such an oracle to perform IGS. Later, we will

integrate this algorithm with Lemmas 1 and 2 to design new algorithms. As before, let𝐺 = (𝑉 , 𝐸) be
the input DAG, and 𝑇 be the HPDFS-tree of 𝐺 . We will assume 𝑘 = 4 in our subsequent examples.

If |𝑽 | ≤ 𝒌 , the LMNT algorithm sets 𝑄 = 𝑉 and queries the oracle with 𝑄 . This reveals the

reachability of every vertex to 𝑡 and thus trivially finds the target.

Next, we consider the more typical situation |𝑽 | > 𝒌 , in which case the algorithm has two phases.

In phase 1, it starts by finding a 𝑘-separator Σ of 𝑇 and the star 𝑠∗ of Σ on 𝑡 . As mentioned in

Section 2, Σ has at most 𝑘 vertices; therefore, 𝑠∗ can be found by issuing a single query to the oracle.

For example, suppose that 𝑡 = (vertex) 11 in Figure 2. The 4-separator Σ that the LMNT algorithm

finds is {1, 3, 14}. The oracle replies “yes”, “no”, and “yes” for those three vertices. With this, we can

decide that 𝑠∗ is vertex 14.
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Phase 1 next retrieves the left flank of 𝑠∗, i.e., LF(𝑠∗). Now, the algorithm pinpoints the vertex 𝑠∗∗

having the smallest HPDFS-order among the vertices in LF(𝑠∗) ∪ {𝑠∗} that can reach 𝑡 . As noted

in Section 2, the size of LF(𝑠∗) must be less than 𝑘 . Hence, LF(𝑠∗) ∪ {𝑠∗} has at most 𝑘 vertices,

permitting 𝑠∗∗ to be found with another query to the oracle. This concludes phase 1. In our earlier

example, we have found 𝑠∗ = 14. Thus, LF(𝑠∗) = {2}. Given 𝑄 = {2, 14}, the oracle answers “yes”
for both vertices, giving 𝑠∗∗ = 2.

Phase 2 does nothing if 𝑠∗∗ ∉ Σ, and the algorithm simply renames 𝑠∗∗ to 𝑠#
. This is the case in

our current example: 𝑠# = 2.

To demonstrate the opposite, let us switch to another target 𝑡 = 21. By following the above steps

of phase 1, one can verify that 𝑠∗ and 𝑠∗∗ are both vertex 14 this time. Thus, 𝑠∗∗ ∈ Σ. In such case, the

algorithm looks for the leftmost child of 𝑠∗∗ in 𝑇 that can reach 𝑡 . If such a child does not exist, the

target must be 𝑠∗∗. Otherwise, the phase finishes by setting 𝑠#
to the child. In our current example

(with 𝑡 = 21), 𝑠∗∗ = 14 has child nodes 15 and 19. As vertex 15 cannot reach 𝑡 , we have 𝑠# = 19.

In general, if 𝑠#
is the 𝑥-th child of 𝑠∗∗, then 𝑠#

can be found with ⌈𝑥/𝑘⌉ queries (by dividing the

child sequence into groups of size 𝑘 and querying with each group in succession). If 𝑠#
does not

exist, this can be detected with at most ⌈𝑦/𝑘⌉ queries, where 𝑦 is the number of children of 𝑠∗∗ in𝑇 .
At the end of Phase 2, if 𝑡 has not been found, the algorithm must be holding a vertex 𝑠# ∉ Σ. It

then collects a set𝑉 #
of vertices in the following procedure. Let𝑇 ′

be the subtree of 𝑠#
in𝑇 . For every

node 𝑢 in𝑇 ′
that falls in Σ, remove the subtree of 𝑢 in𝑇 ′

from𝑇 ′
. Define𝑉 #

as the set of remaining

nodes in 𝑇 ′
. In our first example above with 𝑡 = 11, 𝑠# = 2 and accordingly, 𝑉 # = {2, 10, 11, 12, 13},

whereas in our second example with 𝑡 = 21, 𝑠# = 19 and accordingly, 𝑉 # = {19, 20, 21, 22}.
Finally, the algorithm extracts the subgraph 𝐺# = (𝑉 #, 𝐸#) of 𝐺 induced by 𝑉 #

, namely, 𝐸#

includes every edge of 𝐺 whose both vertices are in 𝑉 #
. It then recurses by finding the target 𝑡 in

𝐺#
. As shown in [16], the entire recursion has 𝑂 (log𝑘 𝑛) levels.

3.3 A Black Box IGS Algorithm
We now explain how to deploy the operations Existence and First-in-Order (Section 1.2) as black

boxes to solve the IGS problem. Our strategy is to “translate” the LMNT algorithm using these

operations, which is made possible by the two lemmas in Section 3.1.

When |𝑽 | ≤ 𝒌. By Lemma 2, it suffices to find the star of the full vertex set 𝑉 on the target 𝑡 . This

can be achieved using Lemma 1. Specifically, we arrange the vertices of 𝑉 into a sequence 𝑄 in

ascending order of their HPDFS-post-orders. The sequence 𝑄 has length |𝑉 | ≤ 𝑘 . We can thus run

First-in-Order(𝑄) and return directly the vertex output by the operation.

When |𝑽 | > 𝒌. Let us discuss phase 1 of the LMNT algorithm. Recall that it first finds the star 𝑠∗

of Σ, where Σ is the 𝑘-separator of 𝑇 found. Equipped with Lemma 1, we sort the vertices of Σ in

ascending order of HPDFS-post-order, and feed the sorted sequence 𝑄 into First-in-Order. The

output of the operator is precisely 𝑠∗.
Phase 1 then finds the vertex 𝑠∗∗ in LF(𝑠∗) ∪ {𝑠∗} that has the smallest HPDFS-order among those

vertices in LF(𝑠∗) ∪ {𝑠∗} capable of reaching 𝑡 . For this purpose, we sort LF(𝑠∗) ∪ {𝑠∗} in ascending

order of HPDFS-order into a sequence 𝑄 and obtain 𝑠∗∗ as the output of First-in-Order(𝑄).
Let us switch attention to phase 2. If 𝑠∗∗ ∉ Σ, then 𝑠# = 𝑠∗∗. Otherwise, we need to find the

leftmost child 𝑠#
of 𝑠∗∗ in 𝑇 that can reach 𝑡 , or declare that no such child exists. To do so, we chop

the child list of 𝑠∗∗ into ⌈𝑦/𝑘⌉ groups — each containing 𝑘 child nodes, except possibly the last one —

where 𝑦 is the number of children of 𝑠∗∗ in 𝑇 . Arrange these groups from left to right by respecting

the original ordering of the child nodes. We process the groups with operation Existence according

to that order: for each group, take the set 𝑄 of 𝑘 vertices therein and perform Existence(𝑄). If the
operation returns “no” for all the ⌈𝑦/𝑘⌉ groups, we know that 𝑠#

does not exist, in which case 𝑡 must
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be 𝑠∗∗ (as in the LMNT algorithm). Otherwise, we stop at the first group𝑄 for which Existence(𝑄)
returns “yes” — this must be the group containing 𝑠#

. So far, ⌈𝑥/𝑘⌉ Existence operations have been
performed if 𝑠#

is the 𝑥-th child of 𝑠∗∗. If 𝑄 represents the sequence of child nodes in that group,

we can now obtain 𝑠#
as the output of First-in-Order(𝑄).

This finishes one level of recursion. If 𝑡 has not been located, then the algorithm recurses on 𝐺#
,

where 𝐺#
is a subgraph derived using 𝑠#

in the way described in Section 3.2.

Analysis. Denote by 𝑇𝐸 (resp., 𝑇𝐹 ) the cost of applying the operation Existence (resp., Find-in-

Order) once. When |𝑉 | ≤ 𝑘 , our framework incurs cost𝑇𝐹 as it performs only one First-in-Order

operation. Next, we consider |𝑉 | > 𝑘 .
Let us first account for the total cost of phase 1. At each recursion level, phase 1 performs

Find-in-Order twice, which requires cost 2 ·𝑇𝐹 . As mentioned in Section 3.2, the whole recursion

has 𝑂 (log𝑘 𝑛) levels. Hence, the overall cost from phase 1 is 𝑂 (𝑇𝐹 · log𝑘 𝑛).
It remains to bound the total cost of phase 2. Two observations are crucial. First, at each recursion

level, phase 2 requires at most one First-in-Order. Thus, overall, the total cost of First-in-Order

from phase 2 across all recursion levels is 𝑂 (𝑇𝐹 · log𝑘 𝑛). Second, at each recursion level, our

algorithm performs Existence as many times as the number of queries issued by the LMNT

algorithm in phase 2. Thus, the total number of Existence operations in our algorithm cannot

exceed the total number of queries in the LMNT algorithm, which is 𝑂 (log𝑘 𝑛 + (𝑑/𝑘) log𝑑 𝑛). This
means that the overall cost of Existence is 𝑂 (𝑇𝐸 · (log𝑘 𝑛 + (𝑑/𝑘) log𝑑 𝑛)).

Theorem 3. The cost of our framework is𝑂 (log𝑘 𝑛 · (𝑇𝐸 +𝑇𝐹 ) +𝑇𝐸 · (𝑑/𝑘) log𝑑 𝑛), where 𝑛 = |𝑉 |, 𝑑 is
the maximum out-degree of𝐺 , and𝑇𝐸 (resp.,𝑇𝐹 ) is the cost of each Existence (resp., Find-in-Order).

3.4 Discussion
As discussed in Section 1.2, our framework yields asymptotically optimal IGS algorithms for all

three oracles simultaneously: classical, taciturn, and FIO (first-in-order). In particular, the number

of queries is 𝑂 (log𝑘 𝑛 + (𝑑/𝑘) log𝑑 𝑛) for both the classical and FIO oracles, while the number is

𝑂 (log𝑛 + (𝑑/𝑘) log𝑑 𝑛) for the taciturn oracle. Intuitively, the number has to be higher for taciturn

because this oracle reveals only one bit of information each time: simply a yes or no answer, i.e.,

whether the given set 𝑄 has a vertex that can reach the target 𝑡 . In contrast, the classical oracle

reveals 𝑘 bits of information: one can think of its answer as a 𝑘-bit string, where the 𝑖-th bit

(1 ≤ 𝑖 ≤ 𝑘) indicates whether the 𝑖-th vertex in 𝑄 can reach the target 𝑡 . On the other hand, the

FIO oracle gives log
2
(1 + 𝑘) bits of information each time: one can regard its answer as an integer

from 1 to 𝑘 + 1 — if the answer is 𝑖 ≤ 𝑘 , it represents the 𝑖-th vertex in the given sequence 𝑄 , while

if the answer is 𝑘 + 1, it means that no vertex in 𝑄 can reach 𝑡 .

Besides producing the first optimal taciturn IGS algorithm, our framework also reveals — some-

what unexpectedly — the redundancy of the classical oracle. As one can see, even though it gives

much more information than the FIO oracle, the latter suffices for achieving the same query com-

plexity. The reader should recall from Section 1 that Ω(log𝑘 𝑛 + (𝑑/𝑘) log𝑑 𝑛) is a lower bound

for the classical oracle. The same lower bound obviously applies to the FIO oracle (which is less
powerful) as well. This makes the FIO oracle particularly interesting because it is “one-click”, as

explained in Section 1.2. Given the above, we believe that our new algorithmic framework brings

us closer to the essence of IGS.

4 Computation of the HPDFS-Tree
This section will focus on the problem of computing the HPDFS-tree of a DAG 𝐺 = (𝑉 , 𝐸) with a

single root. The fastest known algorithm runs in 𝑂 (𝑑𝑛𝑚) time [22], where 𝑛 = |𝑉 |,𝑚 = |𝐸 |, and 𝑑
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is the maximum vertex out-degree in 𝐺 . We will improve this time complexity significantly based

on several non-trivial ideas.

4.1 An 𝑂 (𝑛𝑚)-Time Algorithm
Wewill describe a method to compute the HPDFS-tree in𝑂 (𝑛𝑚) time. The method will be a building

block in our final algorithm.

As explained in Section 2, HPDFS is a special DFS whose execution is guided by vertices’ wr-

counts. These wr-counts may change dynamically as the traversal progresses, and it would be

exceedingly expensive to maintain their accurate values. Our first idea is to keep track of them

only approximately until the moment they are actually needed.

At all times, we store for each vertex 𝑢 ∈ 𝑉 :
• a value 𝛼-cnt (𝑢) as an upper bound of the wr-count of 𝑢.

• a field best-out(𝑢), which is the white out-neighbor of 𝑢 having the smallest 𝛼-cnt. If 𝑢 has

no white out-neighbors, then best-out(𝑢) = ∅.
In addition, we enforce:

Just-in-time accuracy: When HPDFS looks for the next vertex to visit, the following

requirement needs to be satisfied. Let 𝑢top be the vertex at the top of the stack. For any

white out-neighbor 𝑣 of 𝑢top, the value of 𝛼-cnt (𝑣) should equal the current wr-count of 𝑣 .

The above policy ensures that the next vertex to visit is simply best-out(𝑢top), namely, HPDFS will

push the vertex best-out(𝑢top) into the stack and turn it from white to gray. On the other hand, if

best-out(𝑢top) = ∅, then 𝑢top will be popped from the stack and turn from gray to black.

At the beginning of HPDFS, we set, for each vertex 𝑢 ∈ 𝑉 , the value 𝛼-cnt (𝑢) to how many

vertices are reachable from 𝑢 in 𝐺 (note: 𝑢 can reach itself). This can be obtained in 𝑂 (𝑚) time by

performing a conventional DFS on𝐺 from 𝑢. Thus, the 𝛼-cnt values of all vertices can be initialized

in 𝑂 (𝑛𝑚) time, after which all the best-out fields can be decided easily in 𝑂 (𝑚) total time.

During HPDFS, we update the 𝛼-cnt and best-out values only when a vertex 𝑣 turns black, or

equivalently when 𝑣 gets popped from the stack. When this happens, we perform a so-called

reverse update, which
• first finds the set 𝑆 of vertices in 𝐺 able to reach 𝑣 , and

• then decreases 𝛼-cnt (𝑢) by 1 for each vertex 𝑢 ∈ 𝑆 .
The set 𝑆 can be gathered in 𝑂 (𝑚) time by a conventional DFS from 𝑣 on the reverse graph of 𝐺

(as is generated by reversing the direction of every edge in 𝐺). After that, the best-out fields of
all vertices can be updated accordingly in 𝑂 (𝑚) total time. Every vertex turns black exactly once

during the whole HPDFS. Therefore, 𝑛 reverse updates are required in total, with an overall cost of

𝑂 (𝑛𝑚).
Let us illustrate reverse updates using Figure 2. As discussed in Section 2, vertex 5 turns black

first, at which point the stack contains (from bottom to top) vertices 1, 2, 3, and 4. The reverse

update decreases the 𝛼-cnt values of vertices 1-5. Vertex 6, turning black second, triggers a reverse

update that reduces the 𝛼-cnt values of vertices 1-4, 6, and 7. Now, 𝛼-cnt (7) = 2. Next, when vertex

4 turns black, it further lowers the 𝛼-cnt values of vertices 1-4. Now, vertex 3 tops the stack, and
best-out(3) = 7 because 𝛼-cnt (7) = 2 > 1 = 𝛼-cnt (9). The value of 𝛼-cnt (7) equals exactly the

wr-count of vertex 7, as promised by just-in-time accuracy. HPDFS then pushes vertex 7 into the

stack and continues.

To establish our algorithm’s correctness, it remains to prove:

Lemma 4. The just-in-time accuracy policy is enforced after each reverse update.
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Fig. 3. Bridges (in blue) and the effects of their removal

Proof. Consider the moment after a reverse update. Let 𝑢top be the vertex at the top the stack,

and 𝑣 be any of its white out-neighbors. Our algorithm ensures that 𝛼-cnt (𝑣) is exactly the number

of vertices 𝑢 in𝐺 such that (i) 𝑣 can reach 𝑢, and (ii) the color of 𝑢 is not black. Notice that the color

of such a vertex 𝑢 cannot be gray; otherwise, 𝑢 is in the stack and thus has a path to 𝑣 , indicating

the presence of a cycle. Hence, 𝑢 must be white. Next, we argue that 𝑣 can reach 𝑢 via a path of

white vertices. This indicates that 𝛼-cnt (𝑣) equals the wr-count of 𝑣 , as claimed.

Consider an arbitrary path 𝜋 from 𝑣 to 𝑢 in 𝐺 . We claim that every vertex on 𝜋 must be white.

Otherwise, let 𝑢′ be the non-white vertex on 𝜋 nearest to 𝑢. First, 𝑢′ cannot be gray; otherwise,
a cycle would exist because 𝑢′ would be in the stack and hence could reach 𝑣 . Hence, 𝑢′ must be

black. However, the well-known white-path theorem [5] — which applies to any DFS and hence

also HPDFS — states that, before 𝑢′ turns black, DFS must have visited all vertices reachable from

𝑢′. This contradicts the fact that 𝑢 is still white. □

We conclude that the HPDFS-tree can be found in 𝑂 (𝑛𝑚) time.

4.2 Bridges
Let us start with a definition:

Definition 8. An edge 𝐺 = (𝑉 , 𝐸) is a bridge if its removal disconnects 𝐺 into two subgraphs
between which no edges exist.

In general, if 𝑏 is the number of bridges in the input DAG 𝐺 , their removal breaks 𝐺 into 𝑏 + 1

subgraphs such that no edges exist between any two of those subgraphs (this implies 𝑏 < 𝑛).

Consider Figure 2 again. There are 𝑏 = 7 bridges: (2, 3), (4, 5), (7, 8), (3, 9), (2, 12), (2, 13), (14, 15).

To illustrate these subgraphs, in Figure 3, we display each of them in a box and rearrange their

positions into a hierarchy where different boxes are connected using bridges (shown in blue).

Let us represent the 𝑏 + 1 subgraphs mentioned earlier as 𝐺1, 𝐺2, ..., 𝐺𝑏+1, respectively. By

viewing each subgraph as a “super vertex”, these subgraphs form a tree, which we denote as Tsuper.
Specifically, a subgraph 𝐺𝑖 parents another subgraph 𝐺 𝑗 if there is a bridge (𝑢, 𝑣) going from a

vertex 𝑢 in 𝐺𝑖 to a vertex 𝑣 in 𝐺 𝑗 . Conversely, 𝐺 𝑗 is said to be a child of 𝐺𝑖 . The vertex 𝑢 is an exit
vertex of 𝐺𝑖 , and the vertex 𝑣 is an entry vertex of 𝐺 𝑗 . All the standard tree terminology applies.

For example, a subgraph𝐺𝑖′ is a descendent of another subgraph𝐺 𝑗 ′ if𝐺 𝑗 ′ is in the subtree of𝐺𝑖′ in

𝑇super. Furthermore, it is a proper descendent of 𝐺 𝑗 ′ if 𝑖
′ ≠ 𝑗 ′.

In Figure 3, for example,𝐺1 is the parent of𝐺2,𝐺6,𝐺7, and𝐺8. Vertices 2 and 14 are exit vertices of

𝐺1, while 3, 12, 13, and 15 are the entry vertex of𝐺2,𝐺6,𝐺7, and𝐺8, respectively. All the subgraphs

𝐺2, ..., 𝐺7 are proper descendent subgraphs of 𝐺1.

Any DFS — HPDFS included — guarantees:
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One-way property: Consider any bridge (𝑢, 𝑣) and let 𝐺𝑖 (for some 𝑖 ∈ [1, 𝑏]) be the
subgraph of 𝑇super containing 𝑣 . Once 𝑣 is discovered, the DFS will finish visiting all the

descendent subgraphs of 𝐺𝑖 before popping 𝑣 from the stack.

Let us familiarize ourselves with how HPDFS runs from the hierarchy perspective in Figure 3. After

visiting vertices 1 and 2, the algorithm discovers vertex 3 via a bridge. After that, the algorithm

will first visit all the vertices in 𝐺2,𝐺3,𝐺4, and 𝐺5 before backtracking to vertex 2. Furthermore,

this one-way property applies recursively. For instance, in this example, after discovering vertex

3, HPDFS visits vertex 4 and then crosses a bridge to reach vertex 5. The property states that the

algorithm will finish exploring 𝐺3 first before backtracking to vertex 4.

All the bridges of 𝐺 can be found in 𝑂 (𝑚) time [23], after which it is rudimentary to obtain

the resulting subgraphs 𝐺1,𝐺2, ...,𝐺𝑏+1 in another 𝑂 (𝑚) time. For each 𝑖 ∈ [1, 𝑏 + 1], we use 𝑉𝑖
(resp., 𝐸𝑖 ) to denote the set of vertices (resp., edges) in𝐺𝑖 , and define 𝑛𝑖 = |𝑉𝑖 | and𝑚𝑖 = |𝐸𝑖 |. Define
Δ = max

𝑏+1

𝑖=1
𝑚𝑖 , namely, the maximum number of edges in a subgraph.

4.3 An 𝑂 (𝑚 + 𝑛 · Δ)-Time Algorithm
This section will present an algorithm to compute the HPDFS-tree of 𝐺 in 𝑂 (𝑚 + 𝑛 · Δ) time. Our

starting point is still the 𝑂 (𝑛𝑚)-time algorithm — henceforth referred to as the base method — in

Section 4.1. However, we will implement the method in a faster way by resorting to the subgraph

hierarchy 𝑇super.

Computing Initial 𝜶 -cnt Values. Recall that the base method starts by computing, for each

vertex 𝑢 ∈ 𝑉 , an integer 𝛼-cnt (𝑢) equal to the number of vertices reachable from 𝑢 in 𝐺 . Next, we

will explain how to finish such computation in 𝑂 (𝑚 + 𝑛 · Δ) time.

First, arrange the subgraphs in a reverse topological order where a child subgraph always pre-

cedes the parent subgraph. Such orders are not unique, and we can find one in 𝑂 (𝑚) time by

doing a post-order traversal on 𝑇super. In Figure 3, for example, such a traversal yields the order:

𝐺3,𝐺4,𝐺5,𝐺2,𝐺6,𝐺7,𝐺8,𝐺1. We will process the subgraphs according to the reverse topological

order. When processing a subgraph 𝐺𝑖 (for some 𝑖 ∈ [1, 𝑏 + 1]), we make the inductive assumption

that 𝛼-cnt (𝑣) has already been properly computed for every vertex 𝑣 in all the proper descendent

subgraphs of 𝐺𝑖 . This is trivially true if 𝐺𝑖 is a leaf in the hierarchy 𝑇super.

To explain the processing of𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ), let us first define a 𝛽-cnt (𝑢) value for every exit vertex

𝑢 ∈ 𝑉𝑖 :

𝛽-cnt (𝑢) =
∑︁

bridge (𝑢, 𝑣)
𝛼-cnt (𝑣). (1)

The definition is valid because the vertex 𝑣 in a bridge (𝑢, 𝑣) must be in a proper descendent

subgraph of 𝐺𝑖 , and hence its 𝛼-cnt (𝑣) is readily available based on our inductive assumption.

Furthermore, the value 𝛽-cnt (𝑢) has an important meaning: it is how many vertices 𝑢 can reach in

the proper descendent subgraphs of𝐺𝑖 . The time of deriving the 𝛽-cnt values for all exit vertices of
𝑉𝑖 is 𝑂 (1 + # bridges leaving 𝐺𝑖 ).

Consider, for example, the exit vertex 2 of 𝐺1 in Figure 3. When 𝐺1 is processed, 𝛼-cnt (3) = 7,

𝛼-cnt (12) = 1, and 𝛼-cnt (13) = 1 are all ready. Then, 𝛽-cnt (2) = 7 + 1 + 1 = 9, which is precisely

how many vertices that vertex 2 can reach in 𝐺2,𝐺3,𝐺4,𝐺5,𝐺6, and 𝐺7.

Now, we compute the value of 𝛼-cnt (𝑧) for each vertex 𝑧 ∈ 𝑉𝑖 . First, find the set 𝑆 of vertices

that 𝑧 can reach in 𝐺𝑖 . Then, set:

𝛼-cnt (𝑧) = |𝑆 | +
∑︁

exit vertex 𝑢 ∈ 𝑆

𝛽-cnt (𝑢). (2)
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The summation on the right hand side of (2) gives the number vertices reachable from 𝑧 in the

proper descendent subgraphs of𝐺𝑖 . As the set 𝑆 can be acquired by running DFS from 𝑧 within 𝐺𝑖 ,

the cost of calculating 𝛼-cnt (𝑧) is 𝑂 (𝑚𝑖 ) where𝑚𝑖 = |𝐸𝑖 |. Doing so for all the 𝑧 ∈ 𝑉𝑖 takes 𝑂 (𝑛𝑖𝑚𝑖 )
time, where 𝑛𝑖 = |𝑉𝑖 |.

In Figure 3, subgraph𝐺1 has two exit vertices: 2 and 14, with 𝛽-cnt (2) = 9 and 𝛽-cnt (14) = 4. To

compute 𝛼-cnt (1), we first get 𝑆 = {1, 2, 10, 11, 14, 19-23}. Thus, (2) yields 𝛼-cnt (1) = 10+ 9+ 4 = 23.

Using the above strategy, we compute the 𝛼-cnt values for all the vertices of 𝐺 in∑︁
1≤𝑖≤𝑏+1

𝑂 (𝑛𝑖𝑚𝑖 + # bridges leaving 𝐺𝑖 ) (3)

time. Note that

∑𝑏+1

𝑖=1
(# bridges leaving 𝐺𝑖 ) is exactly 𝑏, i.e., the total number of bridges. On the

other hand, applying𝑚𝑖 ≤ Δ for all 𝑖 ∈ [1, 𝑏 + 1], we have ∑𝑏+1

𝑖=1
𝑛𝑖𝑚𝑖 ≤ Δ ·∑𝑏+1

𝑖=1
𝑛𝑖 = 𝑛 · Δ. Thus,

the cost in (3) is 𝑂 (𝑚 + 𝑛 · Δ) (recall that 𝑏 < 𝑛 = 𝑂 (𝑚)).

Out-Neighbor Separation for Exit Nodes. As mentioned, the 𝛼-cnt value of each vertex 𝑢 at

this moment equals how many vertices are reachable from 𝑢 in the whole 𝐺 . We will remember

this value as r-cnt (𝑢). One can regard r-cnt (𝑢) as a “snapshot” of 𝛼-cnt (𝑢) because the former will

not change in the rest of the algorithm, unlike the latter.

Consider 𝑢 as an exit vertex; denote by 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ) the subgraph that 𝑢 belongs to. We define

an out-neighbor 𝑣 of 𝑢 as internal if 𝑣 ∈ 𝑉𝑖 and as external otherwise (this means (𝑢, 𝑣) must be

a bridge). We collect all the external out-neighbors 𝑣 of 𝑢 and sort them in descending order of

r-cnt (𝑣) to form what we call the external out-neighbor list (EON-list) of 𝑢. For example, in Figure 3,

the EON-list of the exit vertex 2 contains (in this order) 3, 12, and 13, whose r-cnt values are 7, 1,
and 1, respectively.

Naively, we could obtain the EON-lists for all the vertices in𝑂 (𝑛 log𝑑) total time, but this would

make our final time complexity 𝑂 (𝑚 + 𝑛 · Δ + 𝑛 log𝑑). To avoid the 𝑂 (𝑛 log𝑑) term, we utilize

counting sort to produce all the EON-lists in 𝑂 (𝑚) time. A crucial observation is that every r-cnt
value is an integer at most 𝑛. Thus, counting sort allows us to arrange all the entry vertices 𝑣 ∈ 𝑉
in descending order of r-cnt (𝑣) using 𝑂 (𝑛) time. After that, we process each entry vertex 𝑣 in the

sorted order and append it to the EON-list of each vertex 𝑢 satisfying the condition that 𝑢 is an exit

vertex and also an in-neighbor of 𝑣 . The total cost is proportional to the total in-degree of all the
entry vertices, which is at most𝑚. In Figure 3, the sorted list of entry vertices is: 3, 15, 5, 8, 9, 12, 13

where r-cnt (3) = 7, r-cnt (15) = 4, and all other vertices have r-cnt value 1. The processing of 3, 15,

5, 8, 9, 12, and 13 appends the vertex to the EON-list of vertex 2, 14, 4, 7, 3, 2, and 2, respectively.

Reverse Updates. The remaining task is to implement the reverse updates in the base method of

Section 4.1. Recall that the purpose of such updates is to maintain the 𝛼-cnt and best-out fields for
all the vertices in 𝑉 . In the base method, whenever a vertex 𝑣 turns black, we decrease 𝛼-cnt (𝑢) for
every vertex 𝑢 that can reach 𝑣 . We can no longer afford this if the goal is to ensure running time

𝑂 (𝑚 + 𝑛 · Δ).
As far as the just-in-time accuracy policy (Section 4.1) is concerned, we can delay many changes

made by reverse updates by harnessing the one-way property (Section 4.2). To explain the rationale,

let us run HPDFS again on the DAG in Figure 3. After pushing vertices 1 and 2 into the stack,

HPDFS discovers vertex 3 by crossing the bridge (2, 3). The one-way property assures us that the

traversal will be “trapped” in the descendent subgraphs of 𝐺2 until all the vertices therein have

turned black. Let 𝑣 be any vertex in𝐺2,𝐺3,𝐺4, or𝐺5. When 𝑣 turns black, the base method decreases

(among others) the values of 𝛼-cnt (2) and 𝛼-cnt (1). Hence, by the time HPDFS backtracks from

the bridge (2, 3) — popping out vertex 3 from the stack — 𝛼-cnt (2) and 𝛼-cnt (1) have both been

decreased precisely 7 times, where 7 is the total number of vertices in 𝐺2,𝐺3,𝐺4, and 𝐺5, and is
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also the r-cnt value of the entry vertex 3! Therefore, rather than modifying 𝛼-cnt (2) and 𝛼-cnt (1)
every time a vertex 𝑣 turns black, we can skip those modifications altogether. Instead, when HPDFS

backtracks from the bridge (2, 3), we can find all the vertices in 𝐺1 capable of reaching vertex 2 —

that is vertices 1 and 2 — and for every such vertex 𝑢, decrease its 𝛼-cnt (𝑢) by r-cnt (3) = 7.

Formally, every time a vertex 𝑣 turns black, we perform a reverse update only in the subgraph,

say 𝐺𝑖 , that contains 𝑣 . Specifically, we find every vertex 𝑧 in 𝐺𝑖 that can reach 𝑣 — this requires a

conventional DFS on the reverse graph of 𝐺𝑖 and finishes in 𝑂 (𝑚𝑖 ) = 𝑂 (Δ) time — and decrease

𝛼-cnt (𝑧) by 1. On the other hand, every time we backtrack from a bridge (𝑢, 𝑣) (i.e., popping out 𝑣

while having 𝑢 at the top of the stack) — assuming that 𝑢 is in subgraph 𝐺 𝑗 — we do an aggregate
reverse update in 𝐺 𝑗 , which

• finds every vertex 𝑧 in 𝐺 𝑗 able to reach 𝑢, and

• decreases 𝛼-cnt (𝑧) by r-cnt (𝑣).
This aggregate reverse update requires a conventional DFS on the reverse graph of 𝐺 𝑗 and finishes

in 𝑂 (𝑚 𝑗 ) = 𝑂 (Δ) time.

Let us illustrate the above using Figure 3. HPDFS first visits vertices 1-5 and then pops out 5,

inducing a reverse update in 𝐺3 that lowers 𝛼-cnt (5) to 0. The traversal backtracks to vertex 4,

triggering an aggregate reverse update in 𝐺2 to reduce 𝛼-cnt (4) and 𝛼-cnt (3) by r-cnt (5) = 1. The

algorithm continues to vertex 6, which then turns black, causing a reverse update in𝐺2 from vertex

6 to decrease 𝛼-cnt (6), 𝛼-cnt (4), 𝛼-cnt (3), and 𝛼-cnt (7) by 1. Next, HPDFS pops 4, pushes and pops
vertices 7, 8, and 9; each pop is followed by a reverse update or an aggregate reverse update in

𝐺2. Now, vertex 3 is popped. Backtracking from vertex 3, the algorithm does an aggregate reverse

update in 𝐺1 from 2, reducing 𝛼-cnt (2) and 𝛼-cnt (1) by r-cnt (3) = 7. The rest execution is similar.

It remains to explain how to maintain the best-out fields. Recall that the base method does so in

𝑂 (𝑚) time after each reverse update. Our goal here is to restore these fields after every reverse

update and every aggregate reverse update, but we must reduce the restoration time from 𝑂 (𝑚)
to 𝑂 (Δ). The complication is that the budget 𝑂 (Δ) allows us to inspect only the edges within the

subgraph where the update occurs. This poses an issue because the restoration of best-out(𝑢) for an
exit vertex 𝑢 requires inspecting edges outside of the subgraph. To see why, consider the moment

when HPDFS backtracks from the bridge (2, 3) to vertex 2. Recall that we perform an aggregate

reverse update from vertex 2 in subgraph 𝐺1. To update best-out(2) at this point, we need the

𝛼-cnt (𝑣) value for every white out-neighbor 𝑣 of vertex 2, that is, vertices 10, 12, and 13. However,

identification of 12 and 13 is through the bridges (2, 12) and (2, 13), which do not belong to 𝐺1.

To handle the issue, we separate the internal out-neighbors of an exit vertex 𝑢 from its external

ones. Specifically, two extra fields are maintained for 𝑢:

• best-int-out(𝑢): the white internal out-neighbor of 𝑢 with the largest 𝛼-cnt value currently;
• best-ext-out(𝑢): the white external out-neighbor of 𝑢 with the largest 𝛼-cnt value currently.

Clearly, best-out(𝑢) is merely the one between best-int-out(𝑢) and best-ext-out(𝑢) having a larger
𝛼-cnt. Consider a reverse update (aggregate or not) in subgraph 𝐺𝑖 . For every exit vertex 𝑢 in

𝐺𝑖 , we restore best-int-out(𝑢) by examining all its internal out-neighbors explicitly. As those out-

neighbors are identified through edges in 𝐺𝑖 , doing so for all exit vertices of 𝐺𝑖 incurs at most a

cost proportional to the number of edges in 𝐺𝑖 , which is bounded by 𝑂 (Δ).
How about best-ext-out(𝑢)? It can be obtained in 𝑂 (1) time per exit vertex 𝑢! This is where the

EON-list of 𝑢 comes in. Due to the one-way property (Section 4.2), HPDFS must visit the external

out-neighbors 𝑣 of 𝑢 in descending order of r-cnt (𝑣). Recall that each EON-list has been sorted in

descending order of r-cnt values. Hence, best-ext-out(𝑢) is simply the first vertex 𝑣 ′ on the EON-List

of 𝑢 that is still white. When 𝑣 ′ turns black, we can update best-ext-out(𝑢) in 𝑂 (1) time by setting

it to the next vertex on the list.
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dataset 𝒏 = |𝑽 | 𝒎 = |𝑬 | 𝚫

Amazon 29240 29239 0

ImageNet 27714 28190 760

WordNet 82115 84427 7162

(a) The 𝑛,𝑚, and Δ values

level 0 1 2 3 4 5 6 7 8 9

avg out-degree 84 11 4.6 2.4 1.0 0.3 0.2 0.1 0.1 0

max out-degree 84 225 90 49 78 27 14 14 2 0

(b) Degree statistics of Amazon

level 0 1 2 3 4 5 6 7 8 9 10 11 12

avg out-degree 8 83 3.4 2.2 1.4 0.9 0.7 0.6 0.5 0.5 0.7 0.4 0

max out-degree 8 402 173 357 304 123 87 31 24 54 21 12 0

(c) Degree statistics of ImageNet

level 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

avg out-degree 3 7.3 10 8.9 3.1 2.0 1.6 0.8 0.8 0.7 0.6 0.6 0.6 0.6 0.5 0.8 0.5 0.2 0

max out-degree 3 8 37 402 150 372 398 320 664 304 123 87 27 24 54 21 12 8 0

(d) Degree statistics of WordNet

Table 1. Real data statistics

Let us demonstrate the effect of separation using Figure 3. As mentioned, the EON-list of vertex 2

has (in this order) vertices 3, 12, and 13. In the beginning, best-ext-out(2) = 3 and best-int-out(2) = 10.

After HPDFS backtracks from the bridge (2, 3), best-ext-out(2) changes to 12. Recall that at this

point an aggregate reverse update is carried out in𝐺1 from vertex 2, but best-int-out(2) still remains

10 after that. As 𝛼-cnt (10) = 2 > 1 = 𝛼-cnt (3) currently, we are sure that best-out(2) = 10.

To analyze the overall running time, first notice that every vertex (when it turns black) triggers

a reverse update in the subgraph where it belongs. Hence, the total number of reverse updates is 𝑛.

Further notice that every entry vertex 𝑣 (when it turns black) triggers an aggregate reverse update

in the parent subgraph of the subgraph containing 𝑣 . Hence, the total number of aggregate reverse

updates is 𝑏 (i.e., the number of bridges). As each reverse update — aggregate or not — takes 𝑂 (Δ)
time, we conclude that all these updates can be completed in 𝑂 ((𝑛 + 𝑏) · Δ) = 𝑂 (𝑛 · Δ) time.

We have proved the second main result of this paper:

Theorem 5. Let 𝐺 = (𝑉 , 𝐸) be a DAG having a single root. Imagine removing all the bridges
(Definition 8), which disconnects 𝐺 into disjoint subgraphs. Let Δ be the maximum number of edges
in a subgraph. Then, the HPDFS-tree of 𝐺 can be computed in 𝑂 (𝑚 + 𝑛 · Δ) time where 𝑛 = |𝑉 | and
𝑚 = |𝐸 |.

5 Experiments
Section 5.1 will describe the data used in our empirical evaluation. Then, Section 5.2 will inspect

the interaction behavior of IGS algorithms, while Section 5.3 will examine their CPU efficiency.

Finally, Section 5.4 will compare IGS to large language models (LLM) in a concrete application of

categorization.

5.1 Data
Real Data. Our experiments deployed three real-world datasets. The first two — Amazon and

ImageNet— have been used in [16, 22] previously. Amazon is a tree representing a product hierarchy
at Amazon, while ImageNet is a (non-tree) DAG representing an annotation ontology for image

categorization. The third real dataset — named WordNet1 — was derived from an English lexical

database, where words are grouped into “synsets”, each being a set of synonyms. To generate a

graph 𝐺 = (𝑉 , 𝐸), we extracted all the noun synsets as vertices in 𝑉 , and created an edge in 𝐸

1
Download at https://wordnetcode.princeton.edu/3.0/WNdb-3.0.tar.gz.
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from a synset 𝑢 to another synset 𝑣 whenever 𝑢 generalizes
2 𝑣 . The 𝐺 obtained in this manner is a

(non-tree) DAG.

Table 1a gives the values of 𝑛 = |𝑉 |,𝑚 = |𝐸 |, and Δ for each dataset. Recall that Δ is the maximum

number of edges in a subgraph after removing all the bridges; note that Δ is 0 for Amazon because

this DAG is a tree.

We define the level of a vertex 𝑢 in a (single-rooted) DAG 𝐺 as the length of the shortest path

from the root of𝐺 to 𝑢. The out-degree statistics per level for Amazon, ImageNet, and WordNet can

be found in Tables 1b-d.

Synthetic Data.We also created synthetic data to study the influence of various control parameters

on the behavior of algorithms. Each synthetic DAG 𝐺 = (𝑉 , 𝐸) was generated based on three

parameters: (i) 𝑛 = |𝑉 |; (ii) an integer 𝑑 equal to the maximum out-degree in 𝐺 ; (iii) a real value

𝑟 ∈ [0, 1) that decides how much 𝐺 deviates from a tree. The generation involves two parts: part

I produces a tree 𝑇init, whereas part II turns 𝑇init to a DAG. Specifically, 𝑇init is a tree of 𝑛 nodes

satisfying:

(1) The root has 𝑑 children.

(2) Let ℎ be the level of the deepest leaf of 𝑇init. Level 𝑖 ∈ [1, ℎ − 1] has exactly 𝑑 · 𝑓 𝑖−1
nodes,

where 𝑓 = ⌈𝑑 · (1 − 𝑟 )⌉. Level ℎ has 𝑛 − 1 −∑ℎ−1

𝑖=1
(𝑑 · 𝑓 𝑖−1) nodes.

(3) With at most a single exception, every non-root internal node has 𝑓 child nodes. The exception

node (if exists), which may have less than 𝑓 child nodes, must be the rightmost internal node

at level ℎ − 1.

Part II converts 𝑇init to a DAG by adding “cross edges”. Specifically, for each non-root internal node

𝑢, we carry out two steps:

(1) If 𝑖 is the level of 𝑢, we uniformly sample a set 𝑆 of 𝑑 − 𝑓 nodes at level 𝑖 + 1 that are not

children of 𝑢 in 𝑇init.

(2) Add an edge from 𝑢 to every node 𝑣 ∈ 𝑆 ; we call this a cross edge because 𝑣 is not a child of 𝑢.

The out-degree of 𝑢 becomes 𝑑 after this step.

Henceforth, 𝑟 will be referred to as the cross ratio. Note that the value of 𝑑 − 𝑓 is roughly 𝑑 · 𝑟 .
When 𝑟 = 0, no cross edges exist such that 𝐺 is simply 𝑇init. As 𝑟 grows, the percentage of cross

edges in 𝐺 escalates accordingly, making 𝐺 increasing “non-tree”.

Unless otherwise stated, the parameters 𝑛,𝑑 , and 𝑟 are set to their default values 1000000, 30,

and 0.1, respectively.

5.2 Evaluation of Interaction Effectiveness
This subsection will evaluate IGS algorithms’ performance in interacting with a human that plays

the role of oracle, assuming that the oracle never errs
3
.

Competing Methods. We studied four algorithms:

• classical: the asymptotically optimal algorithm of [16] for the classical oracle (introduced

in Section 1).

• LMNT-taciturn: the algorithm of [16] for the taciturn oracle (introduced in Section 1).

• new-taciturn: the algorithm obtained by instantiating our framework in Theorem 3 with

the implementation explained in Section 1.2 for the taciturn oracle.

2
Namely, the concept represented by 𝑢 is a hypernym of that of 𝑣.

3
It is standard to tackle human errors through repetition on the same question. Assuming a worker has a probability of

𝑐 > 1/2 answering a question correctly, taking the majority answer (on the same question) from a constant number of

independent workers boosts the accuracy probability to 99.9% (the constant depends on 𝑐).
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FIO/classical new-tacit LMNT-tacit
𝒌 avg (max) avg (max) avg (max)
1 26 (228) 26 (228) 26 (228)

2 14 (115) 18 (116) 19 (116)

4 9.1 (58) 16 (61) 19 (61)

6 7.6 (40) 17 (43) 18 (43)

8 7.7 (31) 17 (35) 18 (35)

10 7 (25) 17 (28) 19 (31)

FIO classical
𝒌 avg (max) avg (max)
1 26 (228) 26 (228)

2 14 (115) 19 (117)

4 9.1 (58) 15 (60)

6 7.6 (40) 15 (43)

8 7.7 (31) 17 (35)

10 7 (25) 17 (29)

(a) Number of queries vs. 𝑘 on Amazon (b) Number of clicks vs. 𝑘 on Amazon

FIO/classical new-tacit LMNT-tacit
𝒌 avg (max) avg (max) avg (max)
1 35 (402) 35 (402) 35 (402)

2 19 (201) 24 (203) 35 (203)

4 12 (102) 20 (104) 24 (105)

6 9.9 (69) 20 (71) 23 (73)

8 8.9 (52) 19 (56) 23 (58)

10 8 (42) 19 (48) 22 (52)

FIO classical
𝒌 avg (max) avg (max)
1 35 (402) 35 (402)

2 19 (201) 25 (203)

4 12 (102) 22 (106)

6 9.9 (69) 20 (73)

8 8.9 (52) 19 (56)

10 8.0 (42) 19 (46)

(c) Number of queries vs. 𝑘 on ImageNet (d) Number of clicks vs. 𝑘 on ImageNet

FIO/classical new-tacit LMNT-tacit
𝒌 avg (max) avg (max) avg (max)
1 46 (676) 46 (676) 46 (676)

2 25 (339) 30 (343) 34 (347)

4 16 (172) 26 (178) 30 (185)

6 12 (114) 24 (121) 31 (133)

8 11 (86) 23 (96) 30 (106)

10 9.6 (70) 23 (80) 32 (92)

FIO classical
𝒌 avg (max) avg (max)
1 46 (676) 46 (676)

2 25 (339) 34 (347)

4 16 (172) 28 (182)

6 12 (114) 24 (122)

8 11 (86) 23 (95)

10 9.6 (70) 22 (79)

(e) Number of queries vs. 𝑘 on WordNet (f) Number of clicks vs. 𝑘 on WordNet

Table 2. Number of queries/clicks vs. 𝑘 (real data)

• FIO: the algorithm obtained by instantiating Theorem 3 with the implementation given in

Section 1.2 for the FIO oracle.

Workloads. Given a DAG𝐺 = (𝑉 , 𝐸), a workload on𝐺 is a subset 𝑆 ⊆ 𝑉 such that each vertex in 𝑆

defines an instance of IGS using that vertex as the target. A full workload comprises all the leaves

of 𝐺 (a leaf is a vertex with out-degree 0), whereas a random workload consists of 1000 random

leaves in 𝐺 . Our experiments always process a full workload on a real-world DAG and a random

workload on a synthetic DAG (due to its vast size).

Metrics. For each algorithm, we measure

• the number of queries issued to the oracle;

• the number of (mouse) clicks by a human acting as the oracle.

Recall that taciturn and FIO are both one-click oracles, namely, each query requires a human (oracle)

to do only one click. The classical oracle — if implemented naively — would require a human to do

𝑘 = |𝑄 | clicks per query, where 𝑄 is the vertex set presented by the query. We propose a better

implementation, motivated by the fact that, in reality, most vertices in 𝐺 cannot reach the target 𝑡

anyway. Given a set 𝑄 of 𝑘 vertices, the human is given a default choice of “no” for each vertex

in 𝑄 . S/he clicks on a vertex 𝑢 ∈ 𝑄 if vertex 𝑢 can reach 𝑡 . If s/he has clicked on all 𝑘 vertices, the

algorithm automatically realizes that the human is done answering the query. However, if not all

the vertices in 𝑄 can reach 𝑡 , the human needs to click on a special “done” button to explicitly

indicate the completion of a query. In this way, if 𝑥 vertices in 𝑄 can reach 𝑡 , the human performs

min{𝑘, 𝑥 + 1} clicks.
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Fig. 4. IGS performance by level (real data, 𝑘 = 5)

FIO new-taciturn

 5

 20

 35

 50

 1  2  4  6  8  10

nu
m

be
r 

of
 q

ue
rie

s

k

 5

 10

 15

 20

 25

 30

0.1M 0.5M 1M 5M 10M

nu
m

be
r 

of
 q

ue
rie

s

n

(a) Vs. 𝑘 (𝑛 = 1M, 𝑑 = 30, 𝑟 = 0.1), (b) Vs. 𝑛 (𝑘 = 5, 𝑑 = 30, 𝑟 = 0.1)

 5

 15

 25

10 20 30 40 50

nu
m

be
r 

of
 q

ue
rie

s

d

 5

 10

 15

 20

 25

0 0.1 0.2 0.3 0.4

nu
m

be
r 

of
 q

ue
rie

s

r

(c) Vs. 𝑑 (𝑘 = 5, 𝑛 = 1M, 𝑟 = 0.1) (d) Vs. 𝑟 (𝑘 = 5, 𝑛 = 1M, 𝑑 = 30)

Fig. 5. Number of queries — also number of clicks — for one-click oracles (synthetic data)

Results on Real Data. For each value 𝑘 ∈ [1, 10], we applied every competing method to execute

a full workload 𝑆 on every real dataset and measured (i) the average number of queries per IGS

instance from 𝑆 , and (ii) the maximum number of queries of all instances. The results are shown in

Tables 2a, 2c, and 2e (with maximum numbers in brackets). The results of FIO and classical are

presented together as they always issue exactly an identical number of queries.
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All methods entailed the same cost at 𝑘 = 1 because they degenerate into the same algorithm at

𝑘 = 1. However, for 𝑘 > 1, the FIO and classical oracles demanded much fewer queries than the

taciturn oracle. Between the two taciturn algorithms, new-taciturn consistently outperformed

LMNT-taciturn, with the highest improvement ratio reaching 23.3% (observed at 𝑘 = 10 on

WordNet). As an interesting observation, for FIO and classical, the maximum cost (of a workload)

decreased almost linearly with 𝑘 and exhibited a strong correlation with the maximum out-degree

of the underlying DAG (as can be seen from Tables 1b-d).

Let us now attend to the number of clicks required by each method. For FIO, new-taciturn, and
LMNT-taciturn, the number is equivalent to the number of queries in Table 2 (as those methods

deploy one-click oracles). Tables 2b , 2d, and 2f give the average and maximum click numbers of

a workload for classical, in comparison to the corresponding numbers of FIO. The difference
between the two methods widened continuously as 𝑘 increased, with FIO achieving a “click saving”
of more than 50% compared to classical at 𝑘 = 10.

The cost of IGS depends heavily on the level of the target vertex. To demonstrate the effect of

level, we zoomed into the results in Table 2 for 𝑘 = 5. For each workload, we grouped the targets

therein by level and measured, for each algorithm, the average number of queries/clicks required to

find the targets of each specific level. Figure 4a (resp., 4b) presents the query (resp., click) number

as a function of level for Amazon. The results for ImageNet and WordNet are shown in Figures 4c-f

(note: these two DAGs have no leaves at level 1). FIO and classical needed significantly fewer

queries than the two taciturn algorithms in finding deep targets. Furthermore, as the level increases,

the superiority of FIO over classical in minimizing clicks became increasingly evident.

Results on Synthetic Data.We now eliminate (i) classical because it is dominated by FIO (in
both query and click numbers) and (ii) LMNT-taciturn due to its dominance by new-taciturn.
Our next experiments aim to study FIO and new-taciturn — the two new algorithms spawned

from our framework — as the input DAG changes in a certain aspect. Synthetic data fit the purpose

very well. Each experiment below is characterized by parameters 𝑛, 𝑑 , 𝑟 , and 𝑘 , where the first

three parameters indicate the synthetic DAG used (see Section 5.1) and 𝑘 , as before, is the size of

the query set 𝑄 given to the oracle each time.

To start with, we set 𝑛, 𝑑 , and 𝑟 to their default values and, for each 𝑘 ∈ [1, 10], used FIO and
new-taciturn to process a random workload. Figure 5a plots each method’s average number of

queries (per instance in the workload) as a function of 𝑘 . Note that each number can be alternatively

interpreted as the average number of clicks (the oracles of FIO and new-taciturn are one-click).
Next, we set 𝑘 to the median value 5 and repeated the above experiment by varying one of the

parameters 𝑛, 𝑑 and 𝑟 . Figures 5b, 5c, and 5d plot the number of queries as a function of 𝑛, 𝑑 , and 𝑟 ,

respectively.

Each method’s behavior in Figures 5a-c closely aligns with its theory-predicted cost: 𝑂 (log𝑘 𝑛 +
(𝑑/𝑘) log𝑑 𝑛) for FIO and 𝑂 (log𝑛 + (𝑑/𝑘) log𝑑 𝑛) for new-taciturn. Figure 5d, on the other hand,

reveals the interesting phenomenon that both methods incurred lower cost as the DAG deviated

further away from a tree. Recall that a higher cross ratio 𝑟 induces more cross edges, which

intuitively strengthens a node’s capability to reach the target. As a result, both algorithms were

able to locate the target with less queries.

5.3 Evaluation of Computation Efficiency
We now proceed to evaluate the benefits brought by our new algorithms for computing the HPDFS-

tree. All experiments in this subsection were conducted on a machine with an Intel CPU running

at 3.6GHz and 8 GB of memory; the operating system was Ubuntu 22.04. Our evaluation inspected

three HPDFS-tree algorithms:
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dnm-time Base Bridge
dataset HPDFS (IGS) HPDFS (IGS) HPDFS (IGS)
Amazon 89 (111) 6.1 (7.6) 2.5 (3.6)

ImageNet 130 (190) 7.8 (11) 3.4 (5.5)

WordNet 515 (759) 28 (59) 12 (24)

unit: millisecond

Table 3. HPDFS and IGS computation time (real data)
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Fig. 6. HPDFS computation time (synthetic data)

• dnm-time: The𝑂 (𝑑𝑛𝑚)-time algorithm of [22], as reviewed in Section 2. The implementation

was exactly the one in [16].

• Base: The 𝑂 (𝑛𝑚)-time algorithm described in Section 4.1.

• Bridge: The 𝑂 (𝑚 + 𝑛 · Δ)-time algorithm in Theorem 5.

Results on real data. Our first set of experiments in this subsection utilized each competing

method to (i) build the HPDFS-tree of each real dataset, and (ii) execute a full workload (defined in

Section 5.2) under the FIO-oracle with 𝑘 = 5. We measured:

• the CPU time to compute the HPDFS-tree on the input 𝐺 ;

• the average CPU time of an IGS instance in the workload (each instance invokes a recursion,

where at each recursion level the HPDFS-tree of a subgraph of 𝐺 is computed).

The results are in Table 3, with IGS time shown in brackets.

On all datasets, the two proposed algorithms were able to produce the HPDFS-tree significantly

faster than the existing dnm-time method, achieving a speedup of over an order of magnitude in

all scenarios. Such a vast efficiency gain was translated to the total IGS time as well: the overall

CPU duration of an IGS instance was also shortened by more than an order of magnitude. Between

our own algorithms, Bridge was roughly 50% faster in both HPDFS-tree construction and overall

IGS computation.

Results on synthetic data. We continued with a similar set of experiments on synthetic datasets,

where we adjusted one of the parameters 𝑛, 𝑑 , and 𝑟 while keeping the others fixed. Figure 6a (resp.,

6b and 6c) plots the HPDFS construction time as a function of 𝑛 (resp., 𝑑 and 𝑟 ). The time escalation

with 𝑛 in Figure 6a is consistent with these algorithms’ runtime complexities. When 𝑛 reached 10

million, dnm-time took more than 170 seconds, while our algorithms finished within 5 seconds.

In Figure 6b, the time decreased as 𝑑 became larger, which can be attributed to the fact that a

larger 𝑑 led to a shallower HPDFS-tree. The result of Figure 6c implied that Bridge gradually lost

its superiority over Base when the input DAG𝐺 departed increasingly away from a tree. Note that

dmn-time was removed from Figures 6b and 6c as the method was not competitive at all.

5.4 IGS in WordNet Categorization
This subsection demonstrates the usefulness of IGS in a concrete application: word categorization

in WordNet. Given the widespread success of LLMs, our study was designed to address two timely
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G2V-1 G2V-10 G2V-100 LLM-Topdown LLM-IGS L-H-IGS L-H-IGS+ H-IGS
number of successes

(out of 30 synsets)

0 14 22 0 0 21 26 30

average number of

queries per synset

- - - - 7 11 12 13

average number of hypernym

tests by human per synset

1 10 100 0 0 32 37 43

Table 4. Aggregate results of synset categorization in WordNet

questions. First, is IGS subsumed by LLMs in functionality in this context? Second, can LLMs be

leveraged to assist humans in IGS?

As explained in Section 5.1, WordNet is a DAG𝐺 = (𝑉 , 𝐸) where nodes are synsets and a (directed)
edge (𝑢, 𝑣) indicates synset𝑢 being a hypernym of synset 𝑣 . Our setup simulated the scenario where

linguists needed to create new leaf synsets. For the experiments to be meaningful, it is imperative to

have non-disputable ground truths; and we achieved the purpose as follows. Let 𝑧 be a leaf synset

in WordNet with a single parent 𝑡 (that is, an in-neighbor of 𝑧). We first removed 𝑧 from WordNet —

denote the resulting DAG as 𝐺\𝑧 — and then tried to put it back. As the ground truth, a method

should locate 𝑡 as the “target” in 𝐺\𝑧 . We say that the method succeeds if it manages to do so, or

fails otherwise.
We examined several methods that represented different degrees of integration between IGS and

an LLM (we used OpenAI’s GPT-4o-2024-08-06 model, abbreviated as the LLM henceforth).

• Gloss2Vec-𝐾 : In WordNet, every synset 𝑢 comes with a gloss (a textual explanation), which

we denote as gloss(𝑢). OpenAI offered a utility (text-embedding-3-small) for converting

gloss(𝑢) to a vector vec(𝑢). The conversion has the property that if gloss(𝑢) is semantically

close to gloss(𝑣), then vec(𝑢) and vec(𝑣) tend to be close in cosine distance. In Gloss2Vec-𝐾 ,
we first obtained the 𝐾 synsets in 𝑉 \ {𝑧} whose vectors had the smallest cosine distances to

vec(𝑧); call those synsets the 𝐾 nearest neighbors (NN) of 𝑧. A human then examined the 𝐾

NNs to identify the most specific hypernym of 𝑧. If 𝑡 (the original parent of 𝑧) was one of the

𝐾 NNs, the method succeeded; otherwise, it failed.

• LLM-Topdown: This method used the LLM to find the target 𝑡 from 𝐺\𝑧 in a “one-level-at-

a-time” manner. Specifically, at each non-leaf node 𝑢 (initially, 𝑢 was the root), we fed the

LLM with gloss(𝑧) and the glosses of all the children of 𝑢. The LLM then picked the child 𝑣

of 𝑢 most likely to be a hypernym of 𝑧, after which the process was repeated at 𝑣 . The LLM

returned 𝑢 if it considered that no such 𝑣 existed.

• LLM-IGS: This method applied our FIO algorithm (Section 5.2) on 𝐺\𝑧 by having the LLM

play the oracle. Specifically, given a query 𝑄 , we fed the LLM with gloss(𝑧) and the glosses

of all the nodes in 𝑄 . Then, the LLM returned what it considered was the leftmost hypernym

of 𝑧 (in the sequence 𝑄), or indicated the absence of any hypernym in 𝑄 .

• LLM-Human-IGS: This method implemented FIO on 𝐺\𝑧 by involving both humans and the

LLM. Given a query 𝑄 , we fed the LLM with the same information as in LLM-IGS. However,
here, the LLM was asked to remove from 𝑄 the nodes that were not hypernyms of 𝑧. The

human then inspected the remaining nodes of 𝑄 to identify the letmost hypernym of 𝑧. If

none was found, the human was then asked to inspect the nodes removed by the LLM to

either find the leftmost hypernym of 𝑧 in 𝑄 or confirm that none existed.

• LLM-Human-IGS+: Same as LLM-Human-IGS except that the human handled 𝑄 directly when

the root of 𝐺\𝑧 was in 𝑄 .
• Human-IGS: The FIO algorithm with a human as the oracle.

Human answers were always correct (in reality, linguists’ opinions prevail). All the FIO imple-

mentations used the parameter 𝑘 = 5 (as in Figure 4). Our experiments used 30 synsets selected in
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word G2V-10 G2V-100 L-H-IGS L-H-IGS+ H-IGS

evergreen ✕ ✓ ✓, 7, 24 ✓, 7, 24 ✓, 7, 26

wassail ✓ ✓ ✓, 11, 19 ✓, 11, 19 ✓, 11, 23

allusion ✓ ✓ ✕, 8, 23 ✕, 8, 25 ✓, 10, 26

cavalier ✕ ✓ ✓, 9, 12 ✓, 9, 14 ✓, 9, 16

sublimate ✕ ✕ ✓, 9, 28 ✓, 9, 29 ✓, 9, 29

eddy ✕ ✕ ✕, 2, 3 ✕, 8, 20 ✓, 11, 22

snivel ✕ ✓ ✓, 9, 16 ✓, 9, 17 ✓, 9, 24

grandiloquence ✕ ✕ ✓, 12, 35 ✓, 12, 37 ✓, 12, 46

bevy ✓ ✓ ✕, 7, 16 ✓, 9, 16 ✓, 9, 20

psephology ✕ ✓ ✓, 12, 18 ✓, 12, 20 ✓, 12, 31

hatching ✓ ✓ ✓, 9, 14 ✓, 9, 14 ✓, 9, 18

disbursement ✕ ✓ ✕, 2, 3 ✓, 12, 32 ✓, 12, 34

euphoria ✓ ✓ ✓, 10, 17 ✓, 10, 20 ✓, 10, 24

garnish ✓ ✓ ✓, 14, 47 ✓, 14, 48 ✓, 14, 50

defenestration ✓ ✓ ✕, 2, 3 ✓, 9, 26 ✓, 9, 26

scapegoat ✕ ✕ ✓, 11, 31 ✓, 11, 32 ✓, 11, 35

adversary ✕ ✕ ✓, 82, 401 ✓, 82, 401 ✓, 82, 401

gossamer ✕ ✓ ✓, 10, 23 ✓, 10, 24 ✓, 10, 25

tribulation ✕ ✓ ✕, 2, 3 ✓, 10, 20 ✓, 10, 24

paraphernalia ✓ ✓ ✓, 10, 27 ✓, 10, 29 ✓, 10, 31

winnow ✓ ✓ ✕, 2, 3 ✓, 11, 31 ✓, 11, 31

succor ✓ ✓ ✓, 10, 29 ✓, 10, 31 ✓, 10, 35

ethos ✕ ✕ ✓, 8, 23 ✓, 8, 25 ✓, 8, 28

memento ✓ ✓ ✓, 11, 22 ✓, 11, 23 ✓, 11, 27

skirl ✕ ✕ ✕, 2, 3 ✕, 8, 20 ✓, 20, 75

Byzantine ✕ ✓ ✕, 11, 38 ✕, 11, 37 ✓, 16, 62

propinquity ✓ ✓ ✓, 11, 20 ✓, 11, 21 ✓, 11, 25

jeremiad ✓ ✓ ✓, 9, 20 ✓, 9, 20 ✓, 9, 25

dearth ✓ ✓ ✓, 10, 20 ✓, 10, 21 ✓, 10, 26

tchotchke ✕ ✕ ✓, 6, 11 ✓, 6, 12 ✓, 6, 20

Table 5. Detailed results of synset categorization in WordNet

a non-subjective manner. Specifically, we took the last 30 nouns on Merrian-Webster’s “word of

the day”
4
before 31 Dec 2024 satisfying the condition that the noun appeared in a unique synset

𝑧 of WordNet. The synset 𝑧 was then selected for our tests. All these nouns are listed in the first

column of Table 5.

For each selected synset 𝑧, we tested all the methods mentioned earlier (for Gloss2Vec-𝐾 , we
evaluated 𝐾 = 1, 10, and 100). For each method, we measured the number of synsets on which

it succeeded. In addition, for every method running on FIO, we measured the number of queries

issued on each word. Finally, for all methods, we also recorded the number of hypernym tests that

the human linguist had to perform, i.e., how many times the human was summoned to manually

decide whether a synset was a hypernym of 𝑧. This number represents the amount of “mental effort”

by the human and is a metric applicable to all the methods (the number of queries is inapplicable

to Gloss2Vec-𝐾). Recall that Gloss2Vec-𝐾 requires a human to perform 𝐾 hypernym tests per

synset.

Table 4 presents our test results at the aggregate level; the numbers at the last two rows are

averages over the 30 selected synsets. Table 5 gives the detailed results on every synset of all methods

except Gloss2Vec-1, LLM-Topdown, and LLM-IGS, which are omitted because they failed on every

4
See www.merriam-webster.com/word-of-the-day.
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synset. Here, a ✓ (resp., ✕) symbol indicates success (resp., failure). Each result of LLM-Human-IGS,
LLM-Human-IGS+, and Human-IGS is presented in the format of “✓/✕, 𝑥 , 𝑦”, where 𝑥 is the number

of queries issued, and 𝑦 is the number of hypernym tests by the human. The value 𝑥 is also the

number of mouse clicks (because FIO is a one-click oracle).

It is worth noting from Table 5 that the synset of “adversary” was an outlier. The target 𝑡 —

namely the synset’s original parent in WordNet — was “person”, which has an unusually large

number of child nodes (the number is 399). To confirm the target, a human must check all those

children (to make sure they are not hypernyms of “adversary”), which explains the high costs

of LLM-Human-IGS, LLM-Human-IGS+, and Human-IGS (note: the number 401 is roughly 5 times

of 82 because 𝑘 = 5). If this outlier case was discounted, then LLM-Human-IGS, LLM-Human-IGS+,
Human-IGS required the human to perform only 19, 24, and 30 hypernym tests on average per

synset, respectively.

In practice, the purpose of labeling (as is done in synset categorization) is for training new

models. As training is extremely expensive in terms of both the electricity consumed and running

time, companies today launch a massive training process only after they have secured high-quality

labeled data. This is especially true considering that labeling is actually significantly cheaper in

comparison. Our experiment results strongly suggest that garnering reliable human inputs is still

the best approach to ensure the quality of labeling, which reaffirms the motivation of IGS.

The LLM, if run with no human intervention, did not produce accurate categorization at all.

However, it could be used to reduce human effort if a moderate drop in accuracy is deemed

acceptable. LLM-Human-IGS+ appears to offer a reasonable tradeoff: it saved about 20% of humans’

efforts compared to Human-IGS, but erred on 4 synsets (out of 30). In any case, the most serious

weakness of LLMs in general is that they offer no guarantees. They can perform terribly in certain

situations, and it is exceedingly difficult (if not impossible) to predict what those situations are.

As shown in Table 5, Human-IGS usually required a human to perform between 20 and 30

hypernym tests for a synset. Considering that the entire WordNet has over 82k synsets, we believe

that this method makes an appealing solution in practice.

6 Related Work
The history of IGS, strictly speaking, could be traced back to the last century, although early work

focused on the special scenario where the input𝐺 is a tree — rather than a DAG — and the value of

𝑘 is fixed to 1 (in which case the classical, taciturn, and FIA oracles are all the same). Specifically,

Ben-Asher and Farchi [1] studied the problem in as early as 1997, but they did not manage to solve

the problem optimally. The first optimal algorithm on (trees and 𝑘 = 1) was developed by Laber

and Nogueira [12] in 2001. Interestingly, since then, their results have been re-discovered at least

twice: in 2006 [8] and 2016 [9], respectively.

Research on DAGs did not commence until 2011, when Parameswaran et al. [19] conceived the

concept of “human-assisted graph search”. The concept is similar to IGS except that no interaction

is permitted. Instead, all questions to the oracle must be prepared “in one go”. The objective is to

get, as much as possible, close to the target vertex (rather than finding the target precisely) subject

to how many questions can be prepared in advance. However, in many scenarios, the number of

questions must be huge to guarantee locating a concept (a.k.a. a vertex in𝐺) that is “not too distant”

from the target 𝑡 .

The term IGS (interactive graph search) was coined by Tao et al. [22] in 2019. Departing from

the all-in-one-go approach of [19], they introduced interaction between an algorithm and a human

annotator, which not only enables the algorithm to precisely pinpoint the target 𝑡 but also signifi-

cantly reduces the number of required questions compared to [19]. They were the first to define
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the HPDFS procedure and showed how to utilize the procedure to design an IGS algorithm for the

classical oracle with non-trivial guarantees.

Improving the result of [22], Lu et al. [15] in 2022 optimally settled IGS for the classical oracle.

They achieved the purpose by establishing and harnessing a set of interesting graph-theoretic

properties of HPDFS. In [16], which is the long version of [15], Lu et al. formulated the taciturn

oracle to address the issue with the classical oracle’s user-unfriendliness. However, as mentioned in

Section 1.1, their taciturn IGS algorithm is nearly-optimal, leaving a gap between the upper bound

and the lower bound. We have managed to close the gap in this work.

Since [22], several other variants of IGS have been studied in the literature. Assuming 𝐺 to be a

tree, Li et al. [14] considered the “multiple-choice oracle” that, when given a vertex 𝑢 in 𝐺 , returns

either the child of𝑢 (in the tree𝐺) being an ancestor of the target 𝑡 , or a token indicating the absence

of such a child. Again assuming 𝐺 to be a tree, Zhu et al. [26] explored an IGS situation where

multiple target vertices are present. In [4], Cong et al. investigated how to minimize the expected

cost of IGS with 𝑘 = 1 when a distribution of the target vertex is available (see [6, 7, 11, 13, 17, 18]

for earlier work that dealt with the same setup but under the constraint that 𝐺 is a tree and the

distribution is uniform). Assuming 𝐺 to be a tree, Cong et al. [3] examined a noisy version of IGS

where the oracle may return incorrect answers. In [25], Zhao et al. proposed a method to accelerate

IGS for image categorization, which utilizes similarity search to shrink the concept (DAG) hierarchy

𝐺 . They also gave an IGS algorithm whose cost is lower than that of [22] (but they did not seem

aware of the results in [15, 16]).

Finally, we note that machine learning methods have recently been deployed to deal with

taxonomy expansion scenarios similar to our setup in Section 5.4. The interested readers may see

[20, 21, 24] and the references therein.

7 Conclusions
IGS, which aims to find a hidden vertex in a DAG with the least interaction rounds between an

algorithm and an oracle, has established its importance in diverse applications. However, the

existing algorithms suffer from at least one of the following drawbacks. First, they may require

more interaction than what is predicted to be necessary by theory. Second, they may demand

considerable monotonous inputs from the (human) oracle. In addition, previous research has

overlooked the issue of scalable computation of the HPDFS tree even though this is a crucial

component in the state-of-the-art solutions. The current paper has presented a systematic study to

address all these problems. We have developed an algorithmic framework that permits a designer to

devise robust IGS algorithms by filling in the implementation of two simple black-box operations.

The framework yields concrete algorithms under various oracles that achieve asymptotically the

minimum interaction with the least human inputs. In addition, we accompany our framework with

a new method for computing the HPDFS tree with a significantly reduced time complexity. Finally,

we have presented an extensive experimental evaluation confirming that the proposed solutions

outperformed their competitors in all the scenarios examined.
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