
Indexing for Keyword Search with Structured Constraints
Shangqi Lu

sqlu@cse.cuhk.edu.hk
Chinese University of Hong Kong

Hong Kong, China

Yufei Tao
taoyf@cse.cuhk.edu.hk

Chinese University of Hong Kong
Hong Kong, China

ABSTRACT
Keyword search, which finds the documents containing all the key-
words supplied by a user, has proved to be an effective approach for
querying non-structured information that does not conform to any
pre-set schemas. In the last two decades, a vast amount of research
— especially in the field of “spatial keyword search” — has been
carried out to design indexes for answering queries that integrate key-
word search with structured predicates imposed on pre-determined
attributes (common examples of such predicates are range condi-
tions, linear constraints, prioritization by distance, etc.). Although
the past investigation has led to a plethora of empirical solutions,
little progress has been made in theory. In fact, for most problems in
the literature, the state of the art is still the naive method that answers
a query purely based on the keyword conditions or the structured
predicates. In this paper, we remedy the issue by developing new
indexes with strong theoretical guarantees for a suite of problems
with heavy importance in real applications. Many of our indexes are
near-optimal, subject to widely-accepted conjectures.

CCS CONCEPTS
• Theory of computation → Data structures design and analysis.

KEYWORDS
Keyword Search, Non-Structured Data, Indexing, Lower Bounds

ACM Reference Format:
Shangqi Lu and Yufei Tao. 2023. Indexing for Keyword Search with Struc-
tured Constraints. In Proceedings of the 42nd ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems (PODS ’23), June
18–23, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3584372.3588663

1 INTRODUCTION
By tradition, database systems support structured retrieval by re-
quiring query predicates to conform to pre-set schemas. Valuable
knowledge, however, exists in non-structured formats. An important
example is “free-form” text data, which are common both in schema-
free systems such as NoSQL databases and schema-oriented systems
such as relational databases (e.g., a remark column for capturing
miscellaneous details that do not fit in any specifically-purposed
attributes). Keyword search, popularized by Internet search engines,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODS ’23, June 18–23, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0127-6/23/06. . . $15.00
https://doi.org/10.1145/3584372.3588663

has proven to be effective in querying non-structured information.
The mechanism works by having a user supply a small number
of keywords and then instructing the system to fetch the data ob-
jects whose text fields contain all the keywords simultaneously. This
search functionality serves as a powerful addition to conventional
query languages (e.g., SQL) and is widely supported by modern
database systems nowadays.

Keyword search is often integrated with structured retrieval to en-
rich expressive power significantly. Consider, for example, a relation
with schema Hotel(price, rating, Doc). Here, each tuple
describes a hotel’s nightly price and guest rating; moreover, the tu-
ple’s Doc column contains textual tags describing the hotel’s special
features. A “pure” keyword query would demand that a hotel’s Doc
should contain, for instance, the words ‘pool’, ‘free-parking’,
and ‘pet-friendly’. In a more realistic scenario, the same query
may include additional conditions concerning the other (structured)
attributes, about which two representative examples are:

C1 price ∈ [$100, $200] and rating ≥ 8;
C2 𝑐1 · price + 𝑐2 · (10 − rating) ≤ 𝑐3, where 𝑐1, 𝑐2, and 𝑐3

are appropriate constants (here we assume that rating is
from 0 to 10).

The distinctive nature of the two examples is notable. C1 places a
separate constraint on each attribute, whereas C2 is a joint constraint
involving multiple attributes.

Queries like the above can be answered by two naive approaches:

• (Structured only) Retrieve all the data objects satisfying the
structured condition (i.e., C1 or C2) and then eliminate those
whose documents do not contain all the keywords.

• (Keywords only) Retrieve all the objects whose documents
include all the keywords and then eliminate those that do not
satisfy the remaining conditions.

The common drawback of both approaches is that they may need to
examine a huge number of “candidate objects” (i.e., those passing
either the structured or keywords condition), even though very few
objects are reported eventually. In particular, their query time can be
asymptotically the same as reading all the data, even if no objects are
reported at all. The drawback has motivated a vast amount of research
in the last two decades, aiming to design innovative techniques that
can “fuse” the processing of structured and keyword predicates (a
review will appear in Section 2). The past investigation has produced
numerous indexes that perform well on “real data”. Nonetheless,
surprisingly little progress has been achieved in theory such that the
two naive solutions are still the state of the art till this day.

We believe that there is a need to provide solid theoretical guid-
ance on this topic, especially given the significance of non-structured

https://doi.org/10.1145/3584372.3588663
https://doi.org/10.1145/3584372.3588663

PODS ’23, June 18–23, 2023, Seattle, WA, USA Shangqi Lu and Yufei Tao

data today. To that end, this work develops new indexes with attrac-
tive guarantees for keyword search coupled with a variety of struc-
tured constraints. Also presented are hardness results suggesting
that many of our indexes can no longer be substantially improved,
subject to widely-accepted conjectures. The rest of the section offers
an overview of our results, which are summarized in Table 1.

1.1 New Indexing Results
In all the problems to be studied, the input dataset is a set 𝐷 of ele-
ments — called objects — such that each object 𝑒 ∈ 𝐷 is associated
with a non-empty document, denoted as 𝑒.Doc, formulated as a set
of integers. Given integers w1,w2, ...w𝑘 (for some 𝑘 ≥ 1) — called
keywords — we define

𝐷 (w1, ...,w𝑘) := {𝑒 ∈ 𝐷 | w𝑖 ∈ 𝑒.Doc for all 𝑖 ∈ [1, 𝑘]} (1)

namely, the set of objects whose documents contain all the keywords
w1, ...,w𝑘 . The input size is

𝑁 :=
∑︁
𝑒∈𝐷

|𝑒.Doc| (2)

i.e., the total size of all the objects’ documents (in all our settings,
the input data require Θ(𝑁) words to store).

The objective is to create an index on 𝐷 to answer queries effi-
ciently. Concrete problems differ in the details of objects and queries,
as introduced below. The computational model assumed is the stan-
dard RAM model where each word has at least log2 𝑁 bits.

Range Reporting with Keywords and Relevant Problems. Let us
start with a fundamental problem that enjoys a prominent position
in the literature.

Orthogonal Range Reporting with Keywords (ORP-KW). 𝐷 is
a set of points in R𝑑 , where R is the real domain and 𝑑 ≥ 1 is
a constant. Fix an integer 𝑘 ≥ 2. Given a 𝑑-rectangle1 𝑞 and
keywords w1, ...,w𝑘 , a query returns 𝑞 ∩ 𝐷 (w1, ...,w𝑘), where
𝐷 (w1, ...,w𝑘) is given in (1). In other words, the query returns
every point of 𝐷 that falls in 𝑞 and contains the 𝑘 keywords in
their documents.

The query in our introductory example with condition C1 illustrates
an ORP-KW query. We will prove:

THEOREM 1. For ORP-KW with 𝑑 ≤ 2, there is an index of
𝑂 (𝑁) space that answers a query in𝑂 (𝑁 1−1/𝑘 · (1+OUT1/𝑘)) time,
where 𝑁 is the input size, 𝑘 is the number of query keywords, and
OUT is the number of points reported.

Evidence will be presented later that the above query time is
unlikely to allow significant improvement. We further show that
there only needs to be an 𝑂 (log log𝑁) blow up in space whenever
the dimensionality 𝑑 increases by one:

THEOREM 2. For ORP-KW in 𝑑-dimensional space where 𝑑 ≥ 3,
there is an index of 𝑂 (𝑁 · (log log𝑁)𝑑−2) space that answers a
query in𝑂 (𝑁 1−1/𝑘 · (1+OUT1/𝑘)) time, where 𝑁 , 𝑘 , and OUT have
the same meanings as in Theorem 1.

1A 𝑑-rectangle is a rectangle of the form [𝑥1, 𝑦1] × [𝑥2, 𝑦2] × ... × [𝑥𝑑 , 𝑦𝑑].

By virtue of ORP-KW’s fundamental nature, Theorems 1 and 2
have implications on many problems that have been considered in
the literature. Below we discuss two notable implications.

Rectangle Reporting with Keywords (RR-KW). 𝐷 is a set of 𝑑-
rectangles in R𝑑 , where 𝑑 ≥ 1 is a constant. Fix an integer 𝑘 ≥ 2.
Given a 𝑑-rectangle 𝑞 and keywords w1, ...,w𝑘 , a query returns
all the rectangles in 𝐷 (w1, ...,w𝑘) intersecting with 𝑞.

For 𝑑 = 1, RR-KW is at the center of keyword search on temporal
documents [7] (i.e., each document has a time interval indicating its
“lifespan”). For 𝑑 ≥ 2, the problem is the essence of keyword search
on geographic entities whose regions are modeled as “minimum
bounding rectangles” [34]. Appendix F shows that Theorems 1 and
2 yield almost immediately:

COROLLARY 3. For RR-KW, there is an index of 𝑂 (𝑁 ·
(log log𝑁)2𝑑−2) space that answers a query in 𝑂 (𝑁 1−1/𝑘 · (1 +
OUT1/𝑘)) time, where 𝑁 is the input size, 𝑘 is the number of query
keywords, and OUT is the number of rectangles reported.

𝐿∞-Nearest Neighbor with Keywords (𝐿∞NN-KW). 𝐷 is a set
of points in R𝑑 , where 𝑑 ≥ 1 is a constant. Fix an integer 𝑘 ≥ 2.
Given a point 𝑞 in R𝑑 , an integer 𝑡 ≥ 1, and keywords w1, ...,w𝑘 ,
a query returns 𝑡 points in 𝐷 (w1, ...,w𝑘) that are closest to 𝑞

under the 𝐿∞ distance2.

In Appendix F, we use Theorems 1 and 2 to prove:

COROLLARY 4. For 𝐿∞NN-KW, there is an index of 𝑂 (𝑁 ·
(log log𝑁)𝑑−2) space that answers a query in 𝑂 (𝑁 1−1/𝑘 · 𝑡1/𝑘 ·
log𝑁) time, where 𝑁 is the input size, 𝑘 is the number of query
keywords, and 𝑡 is the number of points reported.

The problem represents one form of similarity search with key-
words [48] (e.g., find the hotel nearest to an address, among all
the hotels whose features include ‘pool’, ‘free-parking’, and
‘pet-friendly’). Corollary 4 can also be interpreted as an ap-
proximation result under 𝐿2 distance (Euclidean distance) because
the 𝐿∞ distance between any two points is a constant-factor approxi-
mation of their 𝐿2 distance. An exact index under 𝐿2 distance (with
slightly worse guarantees) will be presented shortly.

Linear Conjunction with Keywords and Relevant Problems. Let
us continue with another fundamental problem.

Linear Conjunction with Keywords (LC-KW). 𝐷 is a set of
points in R𝑑 , where 𝑑 ≥ 2 is a constant. A linear constraint
𝑞 has the form

∑𝑑
𝑖=1 𝑐𝑖 · 𝑥 [𝑖] ≤ 𝑐𝑑+1, where 𝑐1, 𝑐2, ..., 𝑐𝑑+1 are

real coefficients; a point 𝑝 := (𝑝 [1], ..., 𝑝 [𝑑]) satisfies the con-
straint if

∑𝑑
𝑖=1 𝑐𝑖 · 𝑝 [𝑖] ≤ 𝑐𝑑+1. Fix an integer 𝑘 ≥ 2. Given

𝑠 := 𝑂 (1) linear constraints and keywords w1, ...,w𝑘 , a query
returns every point 𝑝 ∈ 𝐷 (w1, ...,w𝑘) satisfying the 𝑠 constraints.

2The 𝐿∞ distance of 𝑝 := (𝑝 [1], 𝑝 [2], ..., 𝑝 [𝑑]) and 𝑞 := (𝑞 [1], 𝑞 [2], ..., 𝑞 [𝑑]) is
max𝑑

𝑖=1 |𝑝 [𝑖] − 𝑞 [𝑖] |.

Indexing for Keyword Search with Structured Constraints PODS ’23, June 18–23, 2023, Seattle, WA, USA

problem space query remark

orthogonal range reporting with keywords
𝑑 ≤ 2 𝑂 (𝑁)

𝑂 (𝑁 1−1/𝑘 · (1 + OUT1/𝑘)) opt†

𝑑 ≥ 3 𝑂 (𝑁 (log log𝑁)𝑑−2) opt†

𝑑 ≤ 𝑘 𝑂 (𝑁) 𝑂 (𝑁 1−1/𝑘 · (log𝑁 + OUT1/𝑘)) opt†

rectangle reporting with keywords 𝑂 (𝑁 (log log𝑁)2𝑑−2) 𝑂 (𝑁 1−1/𝑘 · (1 + OUT1/𝑘)) opt†

𝐿∞-nearest neighbor with keywords 𝑂 (𝑁 (log log𝑁)𝑑−2) 𝑂 (𝑁 1−1/𝑘 · 𝑡1/𝑘 · log𝑁) opt‡

linear conjunction with keywords
𝑑 ≤ 𝑘

𝑂 (𝑁) 𝑂 (𝑁 1−1/𝑘 · (log𝑁 + OUT1/𝑘)) opt†

𝑑 > 𝑘 𝑂 (𝑁 1−1/𝑑 + 𝑁 1−1/𝑘 · OUT1/𝑘)

spherical range reporting with keywords
𝑑 ≤ 𝑘 − 1

𝑂 (𝑁) 𝑂 (𝑁 1−1/𝑘 + 𝑁 1−1/𝑘 · OUT1/𝑘) opt†

𝑑 > 𝑘 − 1 𝑂 (𝑁 1−1/(𝑑+1) + 𝑁 1−1/𝑘 · OUT1/𝑘)

𝐿2-nearest neighbor with keywords
𝑑 ≤ 𝑘 − 1

𝑂 (𝑁) 𝑂 (log𝑁 · 𝑁 1−1/𝑘 · (log𝑁 + 𝑡1/𝑘)) opt‡

𝑑 > 𝑘 𝑂 (log𝑁 · (𝑁 1−1/(𝑑+1) + 𝑁 1−1/𝑘 · 𝑡1/𝑘))
†Optimality up to a sub-polynomial factor in the following sense: no indexes of 𝑂 (𝑁 polylog𝑁) space can have query time 𝑂 (𝑁 1− 1

𝑘
−𝜖 + 𝑁

1− 1
𝑘 · OUT

1
𝑘) or

𝑂 (𝑁 1− 1
𝑘 + 𝑁

1− 1
𝑘 · OUT

1
𝑘
−𝜖 + OUT) , regardless of the constant 𝜖 > 0, subject to the strong set-intersection and strong 𝑘-set-disjointness conjectures.

‡No indexes of 𝑂 (𝑁 polylog𝑁) space can have query time 𝑂 (𝑁 1− 1
𝑘 · 𝑡

1
𝑘
−𝜖 + 𝑡) , regardless of the constant 𝜖 > 0, subject to the aforementioned conjectures.

Table 1: Summary of our results

The query in our introductory example with condition C2 illustrates
an LC-KW query with one linear constraint. We will prove in Ap-
pendix D:

THEOREM 5. For LC-KW with 𝑑 ≤ 𝑘 , there is an index of 𝑂 (𝑁)
space that answers a query in 𝑂 (𝑁 1−1/𝑘 · (log𝑁 + OUT1/𝑘)) time,
where 𝑁 is the input size, 𝑘 is the number of query keywords, and
OUT is the number of points reported. For LC-KW with 𝑑 > 𝑘 , there
is an index of 𝑂 (𝑁) space that answers a query in 𝑂 (𝑁 1−1/𝑑 +
𝑁 1−1/𝑘 · OUT1/𝑘) time.

LC-KW stands at the core of many problems. One example is
ORP-KW — our first fundamental problem — noticing that a 𝑑-
rectangle can be regarded as the conjunction of 2𝑑 = 𝑂 (1) linear
constraints. When 𝑑 ≤ 𝑘, Theorem 5 improves the space of Theo-
rem 2 to 𝑂 (𝑁) while ensuring nearly the same query time.3 Next,
we discuss two other notable implications of Theorem 5.

Spherical Range Reporting with Keywords (SRP-KW). 𝐷 is a
set of points in R𝑑 , where R is the real domain and 𝑑 ≥ 1 is
a constant. Fix an integer 𝑘 ≥ 2. Given a sphere 𝑞 in R𝑑 and
keywords w1, ...,w𝑘 , a query returns 𝑞 ∩ 𝐷 (w1, ...,w𝑘), where
𝐷 (w1, ...,w𝑘) is given in (1).

The problem is also known as “boolean range query with key-
words” in the literature [22] (a query example: find all hotels that are
within 1km of a given address and contain keywords w1, ...,w𝑘). In
Appendix F, we will see that Theorem 5 yields almost immediately:

COROLLARY 6. For SRP-KW with 𝑑 ≤ 𝑘 − 1, there is an index of
𝑂 (𝑁) space that answers a query in 𝑂 (𝑁 1−1/𝑘 · (log𝑁 +OUT1/𝑘))
time, where 𝑁 is the input size, 𝑘 is the number of query keywords,
and OUT is the number of points reported. For SRP-KW with 𝑑 >

𝑘 − 1, there is an index of 𝑂 (𝑁) space that answers a query in
𝑂 (𝑁 1−1/(𝑑+1) + 𝑁 1−1/𝑘 · OUT1/𝑘) time.

3Similar improvement can also be obtained on the RR-KW and 𝐿∞NN-KW problems,
which the reader will figure out after going through the relevant proofs.

𝐿2-Nearest Neighbor with Keywords (𝐿2NN-KW). 𝐷 is a set of
points in N𝑑 , where N is the set of 𝑂 (log𝑁)-bits integers and
𝑑 ≥ 2 is a constant. Fix an integer 𝑘 ≥ 2. Given a point 𝑞 in
N𝑑 , an integer 𝑡 ≥ 1, and keywords w1, ...,w𝑘 , a query returns 𝑡
points in 𝐷 (w1, ...,w𝑘) that are closest to 𝑞 under the 𝐿2 distance.

In Appendix F, we will show that Corollary 6 leads to

COROLLARY 7. For 𝐿2NN-KW with 𝑑 ≤ 𝑘−1, there is an index of
𝑂 (𝑁) space that answers a query in𝑂 (log𝑁 ·𝑁 1−1/𝑘 ·(log𝑁+𝑡1/𝑘))
time, where 𝑁 is the input size, 𝑘 is the number of query keywords,
and 𝑡 is the number of points reported. For 𝐿2NN-KW with 𝑑 >

𝑘 − 1, there is an index of 𝑂 (𝑁) space that answers a query in
𝑂 (log𝑁 · (𝑁 1−1/(𝑑+1) + 𝑁 1−1/𝑘 · 𝑡1/𝑘)) time.

1.2 Tightness of Our Results
The reader must have noticed that the query time of our indexes
in Section 1.1 often contains a term 𝑂 (𝑁 1−1/𝑘 · (1 + OUT1/𝑘)).
Next, we will provide justification on the term. The main source of
hardness comes from keyword search, which is in fact the following
problem in disguise.

𝑘-Set Intersection (𝑘-SI). The input data consists of𝑚 ≥ 2 sets
𝑆1, 𝑆2, ..., 𝑆𝑚 of integers. A reporting query picks 𝑘 := 𝑂 (1)
distinct integers w1,w2, ...,w𝑘 ∈ [1,𝑚] and returns

⋂𝑘
𝑖=1 𝑆w𝑖 . An

emptiness query is similar except that it reports only whether⋂𝑘
𝑖=1 𝑆w𝑖 is empty.

A “pure” keyword search query — namely, one that computes
𝐷 (w1, ...,w𝑘) as given in (1) — is equivalent to a 𝑘-SI reporting
query. This is because one can, for each keyword w, create a set 𝑆w
which contains the id of every object 𝑒 ∈ 𝐷 such that w ∈ 𝑒.Doc;
thus, 𝐷 (w1, ...,w𝑘) equals exactly

⋂𝑘
𝑖=1 𝑆w𝑖 (this is the well-known

“inverted index” idea). Conversely, given an instance of 𝑘-SI, one can
create a keyword search instance by treating each set id 𝑖 ∈ [1,𝑚]
as a keyword and creating 𝐷 :=

⋃𝑚
𝑖=1 𝑆𝑖 where each element 𝑒 ∈ 𝐷

PODS ’23, June 18–23, 2023, Seattle, WA, USA Shangqi Lu and Yufei Tao

has a document 𝑒.Doc := {𝑖 | 𝑒 ∈ 𝑆𝑖 }. A reporting query with set ids
w1, ...,w𝑘 has the same result as 𝐷 (w1, ...,w𝑘).

There exist two conjectures on 𝑘-SI, both originating from [31].
• Strong set-intersection conjecture: for any constant 𝛿 ∈ (0, 1],

an index answering a 𝑘-SI reporting query in𝑂 (𝑁 1−𝛿 +OUT)
time — where 𝑁 :=

∑𝑚
𝑖=1 |𝑆𝑖 | and OUT is the size of the

reported intersection — must use Ω(𝑁 1+𝛿/polylog𝑁) space.

• Strong 𝑘-set-disjointness conjecture: for any constant 𝛿 ∈
(0, 1 − 1/𝑘], an index answering a 𝑘-SI reporting query in
𝑂 (𝑁 1− 1

𝑘
−𝛿) time must use Ω(𝑁 1+𝑘𝛿/polylog𝑁) space.

The above conjectures have been widely used [6, 10, 14, 15, 25, 32]
to study fine-grained computational complexities.

Appendix E will prove the next hardness result on 𝑘-SI reporting.

LEMMA 8. Consider 𝑘-SI reporting queries. Suppose that there
is an index of 𝑂 (𝑁 polylog𝑁) space with query time

𝑂

(
𝑁 1−1/𝑘 + 𝑁 1− 1

𝑘 · OUT
1
𝑘
−𝜖 + OUT

)
(3)

for some constant 𝜖 > 0. Then, the same index also achieves query
time 𝑂 (𝑁 1−𝛿 + OUT), where 𝛿 = min{ 1

𝑘
, 𝜖
1−(1/𝑘)+𝜖 }. This defies

the strong set-intersection conjecture.

The lemma allows us to better appreciate a 𝑘-SI reporting index
that occupies𝑂 (𝑁 polylog𝑁) space and guarantees𝑂 (𝑁 1−1/𝑘 · (1+
OUT1/𝑘)) query time. Let us re-write the query complexity into the
following equivalent form:

𝑂

(
𝑁 1−1/𝑘 + 𝑁 1−1/𝑘 · OUT1/𝑘 + OUT

)
. (4)

Every term in the complexity is tight up to a sub-polynomial fac-
tor. First, if the bound could be lowered to 𝑂 (𝑁 1− 1

𝑘
−𝜖 + 𝑁 1−1/𝑘 ·

OUT1/𝑘 +OUT) for some constant 𝜖 > 0, it would have to terminate
in 𝑂 (𝑁 1− 1

𝑘
−𝜖) time when OUT = 0. This, in turn, would imply

that the index could be used to answer a 𝑘-SI emptiness query in
𝑂 (𝑁 1− 1

𝑘
−𝜖) time4, thus breaking the strong 𝑘-set-disjointness con-

jecture. Lemma 8 rules out the possibility of improving the second
additive term 𝑁 1−1/𝑘 · OUT1/𝑘 of (4) even by a factor polynomial
in OUT (let alone in 𝑁), subject to the strong set-intersection conjec-
ture. Finally, the third additive term OUT in (4) is clearly necessary.

The above discussion indicates that, for the ORP-KW, RR-KW,
and LC-KW problems introduced in Section 1.1, if an index uses
𝑂 (𝑁 polylog𝑁) space, the query time in (4) is already the best we
can hope for (up to a sub-polynomial factor), subject to the two afore-
mentioned conjectures. This is because all those problems generalize
𝑘-SI reporting. Consider, for example, ORP-KW. Given an instance
of 𝑘-SI with sets 𝑆1, ..., 𝑆𝑚 , we can create an ORP-KW instance as
follows. First (as explained before), obtain a “pure” keyword search
instance where 𝐷 :=

⋃𝑚
𝑖=1 𝑆𝑖 and 𝑒.Doc := {𝑖 | 𝑒 ∈ 𝑆𝑖 } for each

𝑒 ∈ 𝐷. Then, map each object 𝑒 ∈ 𝐷 to an arbitrary point in R𝑑 .
Given a 𝑘-SI reporting query with set ids w1, ...,w𝑘 , issue an ORP-
KW query with keywords w1, ...,w𝑘 and a search rectangle 𝑞 := R𝑑 .
The two queries return the same result. It thus follows that none of

4Simply run a reporting query. If it does not terminate within 𝑂 (𝑁 1−(1/𝑘)−𝜖) time, the
intersection must be non-empty and we can terminate the query manually.

Theorem 1, Theorem 2, and Corollary 3 is likely to admit signifi-
cant improvement. The same is true for Theorem 5 and Corollary 6
when 𝑑 ≤ 𝑘 and 𝑑 + 1 ≤ 𝑘, respectively. With more effort, similar
(conditional) tightness can also be proved for Corollaries 4 and 7, as
discussed in Appendix G.

We close the section with a remark that our hardness discussion
also explains why it makes sense to focus on queries that issue a
small number 𝑘 of keywords. As 𝑘 increases, the complexity in (4)
continuously approaches 𝑂 (𝑁), thus losing all the advantages over
the naive solution that simply reads the input data in whole.

2 PREVIOUS WORK
We will first review the relevant results in theory before attending to
the related work from the system community.

Let us start with 𝑘-SI reporting, which as mentioned is iden-
tical to pure keyword search. By resorting to (perfect) hashing,
one can build an 𝑂 (𝑁)-space index to answer a query in 𝑂 (𝑁)
time. Improving the query time (but retaining the linear space com-
plexity) has drawn considerable interests. The existing research
can be divided into two lines. The first one aims to achieve query
time of the form 𝑜 (𝑁) + 𝑂 (OUT), where OUT is the output size
(i.e., the intersection size). Bille et al. [11] obtained query time
𝑂 (𝑁 (logwlen)2/wlen+OUT) in expectation where wlen is the word
length (i.e., the number of bits in a word). Eppstein et al. [27] im-
proved the bound to 𝑂 (𝑁 (logwlen)/wlen + OUT), but assuming
𝑘 = 2. Goodrich [33] removed the assumption and attained the same
query time for any constant 𝑘 . In the common scenario where wlen =

Θ(log𝑁), the query time becomes 𝑂 (𝑁 (log log𝑁)/log𝑁 + OUT)
expected, faster than the naive solution by an 𝑂 (log𝑁 /log log𝑁)
factor for OUT = 𝑂 (𝑁 (log log𝑁)/log𝑁).

The second line of works aims at greater improvement over the
naive method when OUT is small. Cohen and Porat [23] developed
an index of space𝑂 (𝑁) that answers a query with 𝑘 = 2 in𝑂 (

√
𝑁 (1+√

OUT)) time. This complexity, interestingly, beats 𝑂 (𝑁) whenever
possible. Specifically, if OUT = Ω(𝑁), the complexity is 𝑂 (𝑁) but,
in that case, any algorithm must spend Ω(𝑁) time outputting the
result anyway. On the other hand, 𝑂 (

√
𝑁 · (1 +

√
OUT)) is 𝑜 (𝑁)

as long as OUT = 𝑜 (𝑁). More importantly, when OUT is small,
e.g., OUT ≤ 𝑁 1−𝜖 , the complexity improves 𝑂 (𝑁) by a polynomial
factor. In [38], Kopelowitz et al. explained how to achieve a smooth
tradeoff between space and query time, which captured the result of
[23] as a special case.

Also focusing on 𝑘 = 2, Afshani and Nielsen [2] investigated
the same tradeoff from the lower bound perspective in the pointer-
machine model. They proved that, for any constant 𝜖 ∈ [0, 1], achiev-
ing 𝑂 (𝑁 1−𝜖 + OUT) query time demands Ω(𝑁 1+𝜖−𝑜 (1)) space, ef-
fectively confirming the strong set-intersection conjecture on pointer
machines. Assuming OUT ≥ 1, they also proved that any structure
with𝑂 ((𝑁 ·OUT)1/2−𝜖 +OUT) query time must use Ω(𝑁 1+𝛿−𝑜 (1))
space where 𝛿 > 0 is a constant dependent on 𝜖.5 For additional
hardness results (less relevant to our work), the reader may refer
to [32] for alternative space-vs-query-time tradeoffs when 𝐷 and

5It is worth mentioning that the structures of [23, 38] require random accesses beyond
the pointer-machine model.

Indexing for Keyword Search with Structured Constraints PODS ’23, June 18–23, 2023, Seattle, WA, USA

𝑁 satisfy extra requirements, and to [31, 39, 40, 46] for tradeoffs
between an index’s preprocessing time and query time.

For every problem in Section 1.1, by ignoring keywords com-
pletely — i.e., replacing 𝐷 (w1, ...,w𝑘) with 𝐷 in every problem defi-
nition — one obtains an indexing problem concerning only geometry.
All those (geometry) problems are classical in computation geometry
and have been well understood; see [1, 3, 13, 16, 44, 45, 47] and the
references therein. The pertinent results, however, shed little light
on the characteristics of our problems because, as discussed, the
hardness in our context stems from 𝑘-SI reporting.

We are aware of no previous work that has established non-trivial
guarantees for any of the problems in Section 1.1. The only exception
is ORP-KW with 𝑑 = 1, for which Goodrich [33] presented an𝑂 (𝑁)-
size index and 𝑂 (𝑁 (log log𝑁)/log𝑁 + OUT) expected query time,
assuming wlen = 𝑂 (log𝑁). We, instead, aim at matching the query
time 𝑂 (𝑁 1−1/𝑘 · (1 +OUT1/𝑘)) of pure keyword search, even in the
presence of structured constraints.

In the system community, the idea of supporting keyword search
in relational databases was introduced at the beginning of the mil-
lennium; see the pioneering works [4, 9, 30, 36, 43]. The set of
problems in Section 1.1 have been extensively studied — see rep-
resentative works [5, 7, 12, 17–22, 28, 34, 35, 37, 41, 42, 48–53]
and the references therein — under the topic of “spatial/temporal
keyword search”. We will not delve into those works further because
the indexes therein, although shown to be empirically efficient, do
not have interesting theoretical guarantees.

3 INDEX TRANSFORMATION FRAMEWORK
As mentioned, if we ignore the keyword components, the problems
defined in Section 1.1 degenerate into conventional geometry prob-
lems, for which effective indexes are known. It would be nice if all
those (pure geometry) indexes could be automatically transformed
to new indexes that can support keyword predicates as well. While
this may sound over-ambitious, a primary technical contribution of
this paper is a generic framework for achieving the purpose on a
class of geometry indexes.

This section will illustrate the framework by adapting the 2D kd-
tree to settle the ORP-KW problem with the guarantees in Theorem 1.
The adaptation contains all the key elements in our framework and
yet involves only light technical complication. After grasping the
rationale behind, the reader will then be ready to apply the framework
to more sophisticated structures, such as the partition tree, which we
discuss in Appendix D in our endeavor to prove Theorem 5.

We summarize the proposed framework into four main steps.

3.1 Step 1: Identifying a Space-Partitioning Index
Let us review the kd-tree to a level sufficient for our discussion.
Denote by 𝑃 a set of 𝑁 points in R2. A kd-tree on 𝑃 is a binary tree
T where there are 𝑁 leaves and each internal node has two child
nodes. Every leaf stores a distinct point of 𝑃 . Given a node 𝑢, we use
𝑃𝑢 to represent the set of points of 𝑃 stored in the subtree of 𝑢.

The kd-tree is space-partitioning because

• every node 𝑢 in T is associated with a 2-rectangle Δ𝑢 as its
cell, which covers all the points in 𝑃𝑢 ;

• the cell of the root is the entire R2;

• for every internal node 𝑢, the cells of its child nodes are
interior disjoint and have Δ𝑢 as their union.

Given a node 𝑢, we use level(𝑢) to denote its level.6 The relation-
ship |𝑃𝑢 | = 𝑂 (𝑁 /2level (𝑢)) holds for all the nodes 𝑢 in T . If 𝑢 is an
internal node with child nodes 𝑣1 and 𝑣2, the cells of 𝑣1 and 𝑣2 obey
the following rules.

• If level(𝑢) is even, Δ𝑢 is split into two rectangles by a vertical
line ℓ . Those rectangles, which touch only at boundary7 and
are interior disjoint, are taken as Δ𝑣1 and Δ𝑣2, respectively.

• If level(𝑢) is odd, the split is analogous except that ℓ is a
horizontal line.

3.2 Step 2: Conversion under General Position
Next, we transform the kd-tree into an ORP-KW index. Recall that
the input is a set 𝐷 of points (a.k.a., objects) in R2, where every
object 𝑒 ∈ 𝐷 has a non-empty set 𝑒.Doc of integer keywords. Let
𝑊 := |⋃𝑒∈𝐷 𝑒.Doc| (the total number of distinct keywords in all
documents). W.l.o.g., each keyword is treated as an integer in [1,𝑊].
As before, let 𝑘 be the number of keywords in an ORP-KW query.

We will first assume 𝐷 in general position, which here means
that no two objects in 𝐷 have the same x- or y-coordinate. The
assumption’s removal will be the last step of our framework.

Verbose Set. We are ready to construct a kd-tree T . However, it is
imperative to build T on a verbose version of 𝐷, rather than on 𝐷

itself. Specifically, for each 𝑒 ∈ 𝐷 , we add |𝑒.Doc| copies of 𝑒 to an
initially-empty set 𝑃 . Those copies are regarded as distinct points in
𝑃 . Henceforth, we will reserve symbol “𝑒” for points in 𝐷 (which
will be consistently called “objects”) and symbol “𝑝” for points in 𝑃

(the term “point” will now be reserved for the elements of 𝑃). The
kd-tree T is constructed on 𝑃 , which has size 𝑁 .

Active and Pivot Sets. For each node 𝑢 in T , we will introduce two
notions: active set 𝐷act

𝑢 and pivot set 𝐷𝑝𝑣𝑡
𝑢 , which satisfy 𝐷

𝑝𝑣𝑡
𝑢 ⊆

𝐷act
𝑢 ⊆ 𝐷 . As will be clear later, 𝐷act

𝑢 contains all the objects stored
in the subtree of 𝑢, among which those in 𝐷

𝑝𝑣𝑡
𝑢 are stored at 𝑢.

We define the two notions in an inductive manner. If 𝑢 is the root
of T , then 𝐷act

𝑢 := 𝐷. Inductively, consider 𝑢 as an internal node
whose 𝐷act

𝑢 has been properly defined, but not yet for 𝐷𝑝𝑣𝑡
𝑢 . Let 𝑣1

and 𝑣2 be the child nodes of 𝑢. Then:

• 𝐷
𝑝𝑣𝑡
𝑢 is the set of objects in 𝐷act

𝑢 falling on the boundary of
Δ𝑣1 or Δ𝑣2 . As 𝐷 is in general position, the pivot set of 𝑢 has
only a constant number of objects.8

• For each 𝑖 ∈ [1, 2], 𝐷act
𝑣𝑖

is the set of objects in 𝐷act
𝑢 that fall

in the interior of Δ𝑣𝑖 .

6In this paper, we follow the convention that the root of a tree is at level 0 and the level
of a child is greater than that of the parent by one.
7In general, the “boundary” and “interior” of a polyhedron Δ in R𝑑 are defined as
follows. Let 𝑝 be a point covered by Δ. If any ball centered at 𝑝 with a positive radius
contains a point outside Δ, 𝑝 is on the boundary of Δ; otherwise, 𝑝 is in the interior.
8Each of Δ𝑣1 or Δ𝑣2 has 4 facets, each of which can contain only one object.

PODS ’23, June 18–23, 2023, Seattle, WA, USA Shangqi Lu and Yufei Tao

Phrased differently, we “push down” an object 𝑒 ∈ 𝐷act
𝑢 into the

active set of 𝑣1 if 𝑒 falls in the interior of Δ𝑣1 (similarly for 𝑣2). After
the push-downs, the objects still in 𝐷act

𝑢 constitute the pivot set of 𝑢.

The above inductive definition is completed by defining 𝐷
𝑝𝑣𝑡
𝑧 :=

𝐷act
𝑧 for every leaf 𝑧 of T .

Large and Small Keywords at a Node. Recall from (1) that, for
each keyword w ∈ [1,𝑊], 𝐷 (w) is the set of objects that contain w
in their documents. In the same fashion, define for each w ∈ [1,𝑊]
and each node 𝑢 in T :

𝐷act
𝑢 (w) := {𝑒 ∈ 𝐷act

𝑢 | w ∈ 𝑒.Doc}. (5)

For each node 𝑢 in T , let

𝑁𝑢 :=
∑︁

𝑒∈𝐷act
𝑢

|𝑒.Doc|. (6)

Observe that 𝑁𝑢 ≤ |𝑃𝑢 | = 𝑂 (𝑁 /2level (𝑢)) because, for every object
𝑒 ∈ 𝐷act

𝑢 , all its copies in 𝑃 are stored in the subtree of 𝑢.

For each w ∈ [1,𝑊] and each node 𝑢 in T , we classify w as

• large at 𝑢 if |𝐷act
𝑢 (w) | ≥ 𝑁

1−1/𝑘
𝑢 ;

• small at 𝑢, otherwise.

As
∑𝑊
w=1 𝐷

act
𝑢 (w) = 𝑁𝑢 , at most 𝑁 1/𝑘

𝑢 large keywords exist at 𝑢.

Structure. We associate each node𝑢 of T with a secondary structure
𝑇𝑢 . The first purpose of 𝑇𝑢 is to store the pivot set 𝐷𝑝𝑣𝑡

𝑢 of 𝑢. If 𝑢
is a leaf, 𝑇𝑢 has no other functionality. Otherwise, 𝑇𝑢 should also
support two operations in constant time:

• given a keyword w, return whether w is large at 𝑢;

• given (i) 𝑘 distinct keywords w1, ...,w𝑘 that are large at 𝑢, and
(ii) a child node 𝑣 of 𝑢, return if

⋂𝑘
𝑖=1 𝐷

act
𝑣 (w𝑖) is empty.

Since at most 𝑁𝑢
1/𝑘 keywords are large at 𝑢, it is rudimentary to

implement 𝑇𝑢 with 𝑂 (𝑁𝑢
1/𝑘) words plus 𝑂 (𝑁𝑢) bits (specifically,

create a hash table on the large keywords and a 𝑘-dimensional bit
array where each cell indicates whether

⋂𝑘
𝑖=1 𝐷

act
𝑣 (w𝑖) is empty for

a distinct combination of large w1, ...,w𝑘).

Finally, to complete the structure, we choose some 𝐷act
𝑢 (w) —

where 𝑢 ranges over all the nodes in T and w ranges over [1,𝑊] —
to store explicitly, in which case we say that 𝐷act

𝑢 (w) is materialized.
Specifically, 𝐷act

𝑢 (w) is materialized if

• w is small at 𝑢;
• w is large at all the proper ancestors of 𝑢.

If either condition is violated, 𝐷act
𝑢 (w) remains conceptual and is

never stored. We prove in Appendix B that the overall space con-
sumption is 𝑂 (𝑁) words.

3.3 Step 3: Bounding the Crossing Sensitivity
We now explain how to answer an ORP-KW query. Our discussion
will bring out a notion — we call “crossing sensitivity” — which
measures how “friendly” the underlying geometry index (here, the
kd-tree) is to the transformation framework. Analyzing the crossing
selectivity is typically the most non-trivial part of the framework.

Algorithm. Given a query with search rectangle 𝑞 and keywords
w1, ...,w𝑘 , we start by visiting the root of T .

In general, to “visit” a node 𝑢, we read every object 𝑒 in the
node’s pivot set, check whether 𝑒 is covered by 𝑞 and whether 𝑒.Doc
contains9 all of w1, ...,w𝑘 , and report 𝑒 upon a “yes” answer to both
questions. If 𝑢 is a leaf, we are done.

The processing continues if 𝑢 is internal. In that case, we use 𝑇𝑢
to find out, in 𝑂 (1) time, if w1, ...,w𝑘 are all large at 𝑢. If so, it may
be necessary to visit the child nodes of 𝑢. Specifically, for each child
𝑣 , we visit it only if two conditions are met:

• ⋂𝑘
𝑖=1 𝐷

act
𝑣 (w𝑖) ≠ ∅, and

• 𝑞 has a non-empty intersection with cell Δ𝑣 .

Checking the conditions takes 𝑂 (1) time (use 𝑇𝑢 for the first condi-
tion).

It remains to discuss what happens if at least one of w1, ...,w𝑘 is
small at𝑢; w.l.o.g., suppose that w1 is small. No proper descendant of
𝑢 will be visited. Moreover, 𝐷act

𝑢 (w1) must have been materialized.10

We read every object 𝑒 ∈ 𝐷act
𝑢 (w1), check if 𝑒 ∈ 𝑞 and 𝑒.Doc has all

the other 𝑘 − 1 keywords, and report 𝑒 upon “yes”. The cost spent
on 𝑢 is 𝑂 (𝑁𝑢

1−1/𝑘) because 𝐷act
𝑢 (w1) has size at most 𝑁𝑢

1−1/𝑘 .

We prove in Appendix B that the algorithm correctly outputs all
the objects in 𝑞 ∩ 𝐷 (w1, ...,w𝑘).

Analysis. The set of nodes visited by the query algorithm forms a
tree Tqry . As can be easily verified, we pay constant time at every
internal node of Tqry , whereas we pay𝑂 (𝑁𝑧

1−1/𝑘) time at every leaf
node 𝑧 of Tqry (note: 𝑧 may not be a leaf of T). Furthermore, every
node 𝑢 in Tqry must have a cell Δ𝑢 intersecting with 𝑞.

We classify each node 𝑢 of Tqry into two types:

• covered, if the cell Δ𝑢 is (fully) covered by 𝑞;
• crossing, otherwise.

By resorting to Friedgut’s inequality [29], we prove in Appendix B:

LEMMA 9. The total cost spent on the covered nodes is
𝑂 (𝑁 1−1/𝑘 (1 + OUT1/𝑘)).

The challenging part is to bound the cost on the crossing nodes.
To do so, let Tcross be the tree obtained from Tqry by deleting all the
covered nodes. We define the crossing sensitivity of 𝑞 as∑︁

internal 𝑢 of Tcross
1 +

∑︁
leaf 𝑧 of Tcross

𝑁
1−1/𝑘
𝑧 (7)

which is (asymptotically) the total cost on the crossing nodes of Tqry .

The above serves as the template of query analysis for our frame-
work. Lemma 9 often holds almost directly (with minor changes in
the proof) for many choices of the underlying geometry index. What
is specific to each individual choice is crossing sensitivity. Proving a
small sensitivity must utilize the geometry index’s properties, as we
show for the kd-tree next.

Crossing Sensitivity of the kd-Tree. We will prove that any 2-
rectangle has crossing sensitivity of 𝑂 (𝑁 1−1/𝑘), which, together

9This check can be done in𝑂 (𝑘) = 𝑂 (1) time, assuming a perfect hash table on 𝑒.Doc.
The hash tables of all objects use 𝑂 (𝑁) space.
10Otherwise, 𝑢 has a proper ancestor at which w1 is small, but in that scenario our
algorithm would not have descended to 𝑢.

Indexing for Keyword Search with Structured Constraints PODS ’23, June 18–23, 2023, Seattle, WA, USA

Tcross

T ′
cross

level 0

level 1

level 2

level 3

level 4

level 5

level 6

=⇒

Figure 1: Compacting Tcross for bounding (8)

with Lemma 9, yields a bound of 𝑂 (𝑁 1−1/𝑘 (1 + OUT1/𝑘)) on the
ORP-KW query time.

We first deal with the special case where 𝑞 is a vertical line. By
standard kd-tree analysis [24], Tcross has 𝑂 (

√
𝑁) nodes11. Hence,∑

internal 𝑢 of Tcross 1 = 𝑂 (
√
𝑁) = 𝑂 (𝑁 1−1/𝑘) as 𝑘 ≥ 2. Moreover, as

any node 𝑢 in the kd-tree satisfies 𝑁𝑢 = 𝑂 (𝑁 /2level (𝑢)), we have∑︁
leaf 𝑧 of Tcross

𝑁
1−1/𝑘
𝑧 =

∑︁
leaf 𝑧 of Tcross

𝑂

(
𝑁

2level (𝑧)

)1− 1
𝑘

= 𝑂 (𝑁 1− 1
𝑘)

∑︁
leaf 𝑧 of Tcross

(
1

2level (𝑧)

)1− 1
𝑘

(as 𝑘 ≥ 2) = 𝑂 (𝑁 1− 1
𝑘)

∑︁
leaf 𝑧 of Tcross

√︂
1

2level (𝑧)
. (8)

To proceed, we must resort to the properties of the kd-tree. Recall
that, if a node 𝑢 is at an even level, its cell is split by a vertical
line. Let us first consider that 𝑞 is different from all those split
lines. Crucially, in Tcross, every internal node of an even level has
only one child!12 Motivated by this, we “compact” Tcross by doing
the following for each even-level internal node 𝑢 in Tcross: delete 𝑢
and make the parent of 𝑢 the new parent of the only child of 𝑢; see
Figure 1 for an illustration. Let T ′

cross be the tree after the compaction.
For each leaf 𝑧 of Tcross , its new level in T ′

cross — denoted as level′ (𝑧)
— equals ⌊level(𝑧)/2⌋. We have:∑︁

leaf 𝑧 of Tcross

√︂
1

2level (𝑧)
≤

∑︁
leaf 𝑧 of T′

cross

2−level
′ (𝑧) ≤ 1.

where the second inequality used the fact [23] that, in any binary
tree,

∑
leaf 𝑧 1/2level of 𝑧 in the tree ≤ 1.

We now drop the assumption that 𝑞 differs from all nodes’ split
lines. Without the assumption, some even-level nodes in Tcross can
have two children. In Appendix B, we argue that there cannot be too
many such nodes and the above argument can be extended to prove:

LEMMA 10. Expression (8) is 𝑂 (𝑁 1−1/𝑘) for any vertical line 𝑞.

We thus have proved that any vertical line has crossing sensitivity
𝑂 (𝑁 1−1/𝑘). An analogous argument shows that the crossing sensi-
tivity of any horizontal line is also 𝑂 (𝑁 1−1/𝑘). It is thus clear that

11Any axis-parallel line intersects the cells of 𝑂 (
√
𝑁) nodes in a kd-tree on 𝑁 points.

12Let 𝑢 be such a node. Δ𝑢 is split by a vertical line ℓ into two rectangles, one of which
must be disjoint with 𝑞.

the crossing sensitivity is still 𝑂 (𝑁 1−1/𝑘) for any 2-rectangle 𝑞 (i.e.,
at most the total crossing sensitivity of the four lines passing through
the four boundary edges of 𝑞, respectively).

3.4 Step 4: Removing General Position
So far we have assumed that no two objects in 𝐷 share the same x- or
y-coordinate. The assumption can be easily eliminated by converting
coordinates into the “rank space”. To that end, sort the objects on
each dimension and break ties by favoring the object with a smaller
id. It is standard to convert a 2-rectangle of the original space into a
2-rectangle of the rank space in 𝑂 (log𝑁) time without affecting the
query result. We now complete the whole proof of Theorem 1.

3.5 Remarks
Our solution was inspired an index of Cohen and Porat [23] for the
2-SI problem defined in Section 1.2 (i.e., 𝑘 = 2 and no geometry
predicates). They also classified keywords as “large” or “small”
and stored hash tables and bit arrays. However, all the ideas about
integration with the kd-tree are new. Several of our techniques are
particularly crucial. The first one is to define the active and pivot
sets by distinguishing objects falling in the cell interior or on the
cell boundaries. The second is the separation between covered and
crossing nodes and then the introduction of “crossing sensitivity”.
The third is the analysis of the kd-tree’s crossing sensitivity. The last
one is the four-step framework itself, whose power will be showcased
again in Appendix D on the LC-KW problem.

We close the section with a note that, although the kd-tree also
works for 𝑑 ≥ 3, its conversion to ORP-KW will suffer from a query
time 𝑂 (𝑁 1−1/max{𝑘,𝑑 } + 𝑁 1−1/𝑘OUT1/𝑘)). We will not delve into
this further because nearly the same performance can be obtained
through LC-KW (Theorem 5). The next section will improve the
query time dramatically to 𝑂 (𝑁 1−1/𝑘 (1 +OUT1/𝑘)) with a different
technique.

4 A DIMENSION REDUCTION TECHNIQUE
UNDER KEYWORDS

This section is dedicated to Theorem 2 for ORP-KW, in particular,
why it suffices to pay only an extra 𝑂 (log log𝑁) factor in space
every time the dimensionality increases by 1. We will prove:

LEMMA 11. For ORP-KW, if we can build an index of
𝑂 (𝑁 (log log𝑁)𝜆−2) space and𝑂 (𝑁 1−1/𝑘 (1+OUT1/𝑘)) query time
for 𝑑 = 𝜆 ≥ 2, then we can build an index of 𝑂 (𝑁 (log log𝑁)𝜆−1)
space and 𝑂 (𝑁 1−1/𝑘 (1 + OUT1/𝑘)) query time for 𝑑 = 𝜆 + 1.

Combining the lemma with Theorem 1 yields Theorem 2. The
rest of the section serves as a proof of the lemma. Our discussion
will henceforth focus on ORP-KW in R𝜆+1. For simplicity, we will
call dimension 1 of R𝜆+1 the “x-dimension” and a coordinate on
this dimension an “x-coordinate”. Recall that the input 𝐷 is a set of
points (a.k.a. objects) in R𝜆+1, where each object 𝑒 ∈ 𝐷 is associated
with a non-empty set 𝑒.Doc of integers (a.k.a. keywords).

Consider any subset 𝐷′ ⊆ 𝐷 . We define

weight (𝐷′) :=
∑︁

𝑒∈𝐷 ′ |𝑒.Doc|. (9)

PODS ’23, June 18–23, 2023, Seattle, WA, USA Shangqi Lu and Yufei Tao

Note that weight (𝐷′) ≥ |𝐷′ | always holds. Given also an integer
𝑓 ≥ 2, we define an 𝑓 -balanced cut of 𝐷′ as a tuple (𝐷1, 𝐷2, ..., 𝐷 𝑓 ,

𝑒∗1, 𝑒
∗
2, ..., 𝑒

∗
𝑓 −1) where

• for each 𝑖 ∈ [1, 𝑓], 𝐷𝑖 is a (possibly empty) subset of 𝐷′, and
for each 𝑖 ∈ [1, 𝑓 − 1], 𝑒∗

𝑖
is either an object in 𝐷′ or null;

• 𝐷1, 𝐷2, ..., 𝐷 𝑓 , {𝑒∗1}, {𝑒
∗
2}, ..., {𝑒

∗
𝑓 −1} are mutually disjoint and

have 𝐷′ as the union;

• for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑓 , every object in 𝐷𝑖 has a smaller
x-coordinate than all objects in 𝐷 𝑗 ;

• weight (𝐷𝑖) ≤ weight (𝐷′)/𝑓 for all 𝑖 ∈ [1, 𝑓], where the
weight (.) function is given in (9).

Such a cut always exists regardless of 𝐷′ and 𝑓 .13

Structure. We will build a tree T where each node 𝑢 is associated
with an active set 𝐷act

𝑢 and a pivot set 𝐷𝑝𝑣𝑡
𝑢 satisfying 𝐷𝑝𝑣𝑡

𝑢 ⊆ 𝐷act
𝑢 ⊆

𝐷 . What is special about T is that the node fanouts (i.e., the number
of children of a node) are set in an unusual manner. To kick off an
inductive definition, set 𝐷act

𝑢 := 𝐷 if 𝑢 is the root of T .

In general, suppose that 𝑢 is a node of T whose 𝐷act
𝑢 has been

defined, but not yet for 𝐷𝑝𝑣𝑡
𝑢 . Denote by level(𝑢) the level of 𝑢 (level

0 for root and level increases by 1 with each child descent). Define

𝑓𝑢 := 2 · 2𝑘
level (𝑢)

(10)

where 𝑘 is the number of keywords issued by an ORP-KW query.
Take an arbitrary 𝑓𝑢 -balanced cut (𝐷1, ..., 𝐷 𝑓𝑢 , 𝑒

∗
1, ..., 𝑒

∗
𝑓𝑢−1) of 𝐷𝑢 .

The pivot set of 𝑢 can now be finalized as 𝐷
𝑝𝑣𝑡
𝑢 := {𝑒∗1, ..., 𝑒

∗
𝑓𝑢−1}.

If 𝐷1, ..., 𝐷 𝑓𝑢 are all empty, we make 𝑢 a leaf of T . Otherwise, for
every non-empty 𝐷𝑖 (𝑖 ∈ [1, 𝑓𝑢]), create a child 𝑣 for 𝑢 whose active
set is 𝐷act

𝑣 := 𝐷𝑖 . This completes the definition of T .

For each node 𝑢 in T , we build a secondary structure 𝑇𝑢 to
answer queries of the form: given 𝑘 keywords w1, ...,w𝑘 and a
(𝜆+1)-rectangle 𝑞 whose x-projection is (−∞,∞), report the objects
𝑒 ∈ 𝐷act

𝑢 such that 𝑒 (which is a point) is covered by 𝑞, and 𝑒.Doc
contains all of w1, ...,w𝑘 . Note that 𝑇𝑢 is merely an ORP-KW index
of 𝑑 = 𝜆 (because we can ignore the x-dimension), which is already
available according to the statement of Lemma 11. To complete the
whole index, we store the pivot set of each node in T explicitly.

Query. To explain our query algorithm, for each node 𝑢 in T , define
𝜎 (𝑢) as the tightest interval covering the x-coordinates of all the
points in 𝐷act

𝑢 . Also, given a (𝜆 + 1)-rectangle 𝑞, let 𝑞 [𝑖] represent
the interval that is the projection of 𝑞 on dimension 𝑖 ∈ [1, 𝜆 + 1];
note that 𝑞 [1] is the interval for the x-dimension.

Now, consider a query with (𝜆 + 1)-rectangle 𝑞 and keywords
w1, ...,w𝑘 . To answer it, we visit every node 𝑢 of T such that

• 𝜎 (𝑢) ∩ 𝑞 [1] ≠ ∅, and

• no proper ancestor 𝑣 of 𝑢 has 𝜎 (𝑣) contained in 𝑞 [1].

13We describe a simple algorithm here. Sort the objects of 𝐷 ′ by x-coordinate. Scan
the objects in the sorted order and pack as many into 𝐷1 as possible subject to
weight (𝐷1) ≤ weight (𝐷 ′)/𝑓 . Then, set 𝑒∗1 to the next object in the sorted list.
Continue the scan and pack as many into 𝐷2 as possible subject to weight (𝐷2) ≤
weight (𝐷 ′)/𝑓 , and set 𝑒∗2 to the next object. Repeat until exhausting the list.

Figure 2: Nodes in Tqry: black for type 1 and white for type 2

Denote by Tqry the tree induced by the nodes visited. Divide the
nodes 𝑢 of Tqry into:

• (type 1) 𝜎 (𝑢) is contained in 𝑞 [1];

• (type 2) the rest.

Each level of T can have up to two nodes of type-2; see Figure 2 for
an illustration. At each type-1 node 𝑢, we use𝑇𝑢 to report the objects
𝑒 ∈ 𝐷act

𝑢 satisfying (i) 𝑒.Doc has all of w1, ...,w𝑘 and (ii) 𝑒 falls in
the (𝜆 + 1)-rectangle (−∞,∞) ×𝑞 [2] × ... ×𝑞 [𝜆 + 1]. At each type-2
node 𝑢, we pay 𝑂 (|𝐷𝑝𝑣𝑡

𝑢 |) = 𝑂 (𝑓𝑢) time to examine all the objects
in its pivot set and report those satisfying the query predicate.

Analysis. Let us start with three technical propositions, whose proofs
can be found in Appendix C.

PROPOSITION 1. T has 𝑂 (log log𝑁) levels.

PROPOSITION 2. For any node 𝑢 of T , weight (𝐷act
𝑢) · 𝑓

1
𝑘−1
𝑢 =

𝑂 (𝑁 /2level (𝑢)).

PROPOSITION 3. For any node 𝑢 of T , 𝑓𝑢 = 𝑂 (𝑁 1−1/𝑘).

To understand the space complexity of our index, first note that
T itself uses 𝑂 (𝑁) space, and all the pivot sets of the nodes in
T take up 𝑂 (𝑁) space in total14. Next, we discuss the secondary
structures 𝑇𝑢 of the nodes 𝑢 in T . Each 𝑇𝑢 — which, as mentioned,
is a 𝜆-dimensional index on 𝐷act

𝑢 — occupies 𝑂 (weight (𝐷act
𝑢) ·

(log log𝑁)𝜆−2) space (as is a given condition in Lemma 11). If we
sum up the term weight (𝐷act

𝑢) for all the nodes 𝑢 at the same level of
T , we get at most 𝑁 because every object in 𝐷 belongs to the active
set of at most one node at this level. Hence, all the secondary struc-
tures of the nodes at each level of T occupy 𝑂 (𝑁 · (log log𝑁)𝜆−2)
space in total. As T has 𝑂 (log log𝑁) levels (Proposition 1), the
overall space usage is 𝑂 (𝑁 · (log log𝑁)𝜆−1).

The subsequent discussion focuses on query time. We analyze
the cost spent on type-1 and -2 nodes separately. Recall that each
level of T has at most two type-2 nodes, and we pay 𝑂 (𝑓𝑢) time for
every such node 𝑢. By Propositions 1 and 3, it is easy to bound the
cost of all type-2 nodes as 𝑂 (𝑁 1−1/𝑘 log log𝑁). However, we can
eliminate the 𝑂 (log log𝑁) factor by observing that 𝑓𝑢 , given in (10),
increases quickly with level(𝑢). Hence, the total cost spent on all
the type-2 nodes is asymptotically dominated by the term 𝑓𝑢 of the
deepest type-2 node, which is 𝑂 (𝑁 1−1/𝑘) (Proposition 3).

14Every object of 𝐷 appears in exactly one pivot set.

Indexing for Keyword Search with Structured Constraints PODS ’23, June 18–23, 2023, Seattle, WA, USA

It remains to bound the cost on type-1 nodes. Recall that, on
every such node 𝑢, we issue a 𝜆-dimensional ORP-KW query on its
secondary structure 𝑇𝑢 . If this query returns OUT𝑢 objects, by the
condition given in Lemma 11, its cost is 𝑂 (weight (𝐷act

𝑢)1−1/𝑘 (1 +
OUT1/𝑘𝑢)). Therefore, the total cost spent on all the type-1 nodes is
asymptotically:∑︁

type-1 𝑢

(
weight (𝐷act

𝑢)1−1/𝑘 + weight (𝐷act
𝑢)1−1/𝑘 · OUT1/𝑘𝑢

)
. (11)

Observe that all the type-1 nodes 𝑢 have disjoint x-ranges 𝜎 (𝑢).
Hence, every object in 𝐷 is in the active set of at most one type-1
node, which gives us

∑
type-1 𝑢 weight (𝐷act

𝑢) ≤ 𝑁 . Moreover, we
obviously have

∑
type-1 𝑢 OUT𝑢 ≤ OUT. Thus, Friedgut’s inequality

(see Appendix A) immediately yields:∑︁
type-1 𝑢

weight (𝐷act
𝑢)1−1/𝑘 · OUT1/𝑘𝑢 ≤ 𝑁 1−1/𝑘 · OUT1/𝑘 . (12)

In the argument below, we will prove
∑

type-1 𝑢 weight (𝐷act
𝑢)1−1/𝑘 =

𝑂 (𝑁 1−1/𝑘), which will complete the whole proof of Lemma 11
together with (11) and (12).

Every type-1 node’s parent is of type 2. On the other hand, for
every type-2 node 𝑣 , we have∑︁

type-1 child 𝑢 of 𝑣
weight (𝐷act

𝑢)1−1/𝑘

≤
∑︁

type-1 child 𝑢 of 𝑣

(weight (𝐷act
𝑣)

𝑓𝑣

)1−1/𝑘
≤ 𝑓𝑣 ·

(weight (𝐷act
𝑣)

𝑓𝑣

)1− 1
𝑘
=

(
weight (𝐷act

𝑣) · 𝑓
1

𝑘−1
𝑣

)1− 1
𝑘

= 𝑂

((𝑁

2level (𝑣)
)1−1/𝑘)

where the last step used Proposition 2. Therefore:∑︁
type-1 𝑢

weight (𝐷act
𝑢)1−1/𝑘

≤
∑︁

type-2 𝑣

∑︁
type-1 child 𝑢 of 𝑣

weight (𝐷act
𝑢)1−1/𝑘

=
∑︁

type-2 𝑣
𝑂

((𝑁

2level (𝑣)
)1−1/𝑘)

which is 𝑂 (𝑁 1−1/𝑘) because at most two type-2 nodes exist at each
level of T , and (𝑁

2level (𝑣))
1−1/𝑘 decreases geometrically with level(𝑣).

ACKNOWLEDGEMENTS
This work was supported in part by GRF projects 14207820,
14203421, and 14222822 from HKRGC.

REFERENCES
[1] Peyman Afshani and Timothy M. Chan. 2009. Optimal halfspace range reporting

in three dimensions. In Proceedings of the Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). 180–186.

[2] Peyman Afshani and Jesper Sindahl Nielsen. 2016. Data Structure Lower Bounds
for Document Indexing Problems. In Proceedings of International Colloquium on
Automata, Languages and Programming (ICALP). 93:1–93:15.

[3] Pankaj K. Agarwal. 2004. Range Searching. In Handbook of Discrete and
Computational Geometry, 2nd Ed. Chapman and Hall/CRC, 809–837.

[4] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. 2002. DBXplorer: A
System for Keyword-Based Search over Relational Databases. In Proceedings of
International Conference on Data Engineering (ICDE). 5–16.

[5] Abdulaziz Almaslukh and Amr Magdy. 2018. Evaluating spatial-keyword queries
on streaming data. In Proceedings of International Conference on Advances in
Geographic Information Systems (SIGSPATIAL). 209–218.

[6] Amihood Amir, Panagiotis Charalampopoulos, Solon P. Pissis, and Jakub Ra-
doszewski. 2020. Dynamic and Internal Longest Common Substring. Algorithmica
82, 12 (2020), 3707–3743.

[7] Avishek Anand, Srikanta J. Bedathur, Klaus Berberich, and Ralf Schenkel. 2010.
Efficient temporal keyword search over versioned text. In Proceedings of Confer-
ence on Information and Knowledge Management (CIKM). 699–708.

[8] Franz Aurenhammer. 1987. A Criterion for the Affine Equivalence of Cell Com-
plexes in 𝑅𝑑 and Convex Polyhedra in 𝑅𝑑+1. Discrete & Computational Geometry
2 (1987), 49–64.

[9] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and S.
Sudarshan. 2002. Keyword Searching and Browsing in Databases using BANKS.
In Proceedings of International Conference on Data Engineering (ICDE). 431–
440.

[10] Philip Bille, Inge Li Gortz, Max Rishoj Pedersen, and Teresa Anna Steiner. 2021.
Gapped Indexing for Consecutive Occurrences. In Proceedings of Annual Sympo-
sium on Combinatorial Pattern Matching (CPM). 10:1–10:19.

[11] Philip Bille, Anna Pagh, and Rasmus Pagh. 2007. Fast Evaluation of Union-
Intersection Expressions. In International Symposium on Algorithms and Compu-
tation (ISAAC). 739–750.

[12] Ariel Cary, Ouri Wolfson, and Naphtali Rishe. 2010. Efficient and Scalable Method
for Processing Top-k Spatial Boolean Queries. In Proceedings of Scientific and
Statistical Database Management (SSDBM). 87–95.

[13] Timothy M. Chan. 2012. Optimal Partition Trees. Discrete & Computational
Geometry 47, 4 (2012), 661–690.

[14] Timothy M. Chan, Saladi Rahul, and Jie Xue. 2020. Range closest-pair search in
higher dimensions. Comput. Geom. 91 (2020), 101669.

[15] Panagiotis Charalampopoulos, Pawel Gawrychowski, Shay Mozes, and Oren
Weimann. 2021. An Almost Optimal Edit Distance Oracle. In Proceedings of
International Colloquium on Automata, Languages and Programming (ICALP).
48:1–48:20.

[16] Bernard Chazelle. 1988. A Functional Approach to Data Structures and Its Use in
Multidimensional Searching. SIAM Journal of Computing 17, 3 (1988), 427–462.

[17] Gang Chen, Jingwen Zhao, Yunjun Gao, Lei Chen, and Rui Chen. 2018. Time-
Aware Boolean Spatial Keyword Queries (Extended Abstract). In Proceedings of
International Conference on Data Engineering (ICDE). 1781–1782.

[18] Lisi Chen, Gao Cong, Christian S. Jensen, and Dingming Wu. 2013. Spatial
Keyword Query Processing: An Experimental Evaluation. Proceedings of the
VLDB Endowment (PVLDB) 6, 3 (2013), 217–228.

[19] Lisi Chen, Yan Cui, Gao Cong, and Xin Cao. 2014. SOPS: A System for Efficient
Processing of Spatial-Keyword Publish/Subscribe. Proceedings of the VLDB
Endowment (PVLDB) 7, 13 (2014), 1601–1604.

[20] Lisi Chen, Shuo Shang, Chengcheng Yang, and Jing Li. 2020. Spatial keyword
search: a survey. GeoInformatica 24, 1 (2020), 85–106.

[21] Yen-Yu Chen, Torsten Suel, and Alexander Markowetz. 2006. Efficient query
processing in geographic web search engines. In Proceedings of ACM Management
of Data (SIGMOD). 277–288.

[22] Zhida Chen, Lisi Chen, Gao Cong, and Christian S. Jensen. 2021. Location- and
keyword-based querying of geo-textual data: a survey. The VLDB Journal 30, 4
(2021), 603–640.

[23] Hagai Cohen and Ely Porat. 2010. Fast set intersection and two-patterns matching.
Theoretical Computer Science 411, 40-42 (2010), 3795–3800.

[24] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. 2008.
Computational Geometry: Algorithms and Applications (3rd ed.). Springer-
Verlag.

[25] Shaleen Deep and Paraschos Koutris. 2018. Compressed Representations of
Conjunctive Query Results. In Proceedings of ACM Symposium on Principles of
Database Systems (PODS). 307–322.

[26] Herbert Edelsbrunner and Ernst P. Mucke. 1990. Simulation of simplicity: a
technique to cope with degenerate cases in geometric algorithms. ACM Trans.
Graph. 9, 1 (1990), 66–104.

[27] David Eppstein, Michael T. Goodrich, Michael Mitzenmacher, and Manuel R.
Torres. 2017. 2-3 Cuckoo Filters for Faster Triangle Listing and Set Intersection.
In Proceedings of ACM Symposium on Principles of Database Systems (PODS).
247–260.

[28] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. 2008. Keyword Search on
Spatial Databases. In Proceedings of International Conference on Data Engineer-
ing (ICDE). 656–665.

[29] Ehud Friedgut. 2004. Hypergraphs, Entropy, and Inequalities. Am. Math. Mon.
111, 9 (2004), 749–760.

[30] Roy Goldman, Narayanan Shivakumar, Suresh Venkatasubramanian, and Hector
Garcia-Molina. 1998. Proximity Search in Databases. In Proceedings of Very
Large Data Bases (VLDB). 26–37.

[31] Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. 2017. Condi-
tional Lower Bounds for Space/Time Tradeoffs. In Algorithms and Data Structures

PODS ’23, June 18–23, 2023, Seattle, WA, USA Shangqi Lu and Yufei Tao

Workshop (WADS). Springer, 421–436.
[32] Isaac Goldstein, Moshe Lewenstein, and Ely Porat. 2019. On the Hardness of

Set Disjointness and Set Intersection with Bounded Universe. In International
Symposium on Algorithms and Computation (ISAAC). 7:1–7:22.

[33] Michael T. Goodrich. 2017. Answering Spatial Multiple-Set Intersection Queries
Using 2-3 Cuckoo Hash-Filters. CoRR abs/1708.09059 (2017).

[34] Ramaswamy Hariharan, Bijit Hore, Chen Li, and Sharad Mehrotra. 2007. Pro-
cessing Spatial-Keyword (SK) Queries in Geographic Information Retrieval (GIR)
Systems. In Proceedings of Scientific and Statistical Database Management (SS-
DBM). 16.

[35] Tuan-Anh Hoang-Vu, Huy T. Vo, and Juliana Freire. 2016. A Unified Index for
Spatio-Temporal Keyword Queries. In Proceedings of Conference on Information
and Knowledge Management (CIKM). 135–144.

[36] Vagelis Hristidis and Yannis Papakonstantinou. 2002. DISCOVER: Keyword
Search in Relational Databases. In Proceedings of Very Large Data Bases (VLDB).
670–681.

[37] Wenyu Huo and Vassilis J. Tsotras. 2012. A Comparison of Top-k Temporal Key-
word Querying over Versioned Text Collections. In Proceedings of International
Conference on Database and Expert Systems Applications (DEXA). 360–374.

[38] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. 2015. Dynamic Set Intersection. In
Algorithms and Data Structures Workshop (WADS). 470–481.

[39] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. 2016. Higher Lower Bounds from
the 3SUM Conjecture. In Proceedings of the Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). 1272–1287.

[40] Tsvi Kopelowitz and Virginia Vassilevska Williams. 2020. Towards Optimal Set-
Disjointness and Set-Intersection Data Structures. In Proceedings of International
Colloquium on Automata, Languages and Programming (ICALP), Vol. 168. 74:1–
74:16.

[41] Taesung Lee, Jin-Woo Park, Sanghoon Lee, Seung-won Hwang, Sameh Elnikety,
and Yuxiong He. 2015. Processing and Optimizing Main Memory Spatial-
Keyword Queries. Proceedings of the VLDB Endowment (PVLDB) 9, 3 (2015),
132–143.

[42] Zhisheng Li, Ken C. K. Lee, Baihua Zheng, Wang-Chien Lee, Dik Lun Lee, and
Xufa Wang. 2011. IR-Tree: An Efficient Index for Geographic Document Search.
IEEE Transactions on Knowledge and Data Engineering (TKDE) 23, 4 (2011),
585–599.

[43] Ute Masermann and Gottfried Vossen. 2000. SISQL: Schema-Independent Data-
base Querying (On and Off the Web). In Proceedings of International Database
Engineering and Applications Symposium (IDEAS). 55–64.

[44] Jiri Matousek. 1992. Efficient Partition Trees. Discrete & Computational Geome-
try 8 (1992), 315–334.

[45] Jiri Matousek. 1992. Reporting Points in Halfspaces. Computational Geometry 2
(1992), 169–186.

[46] Mihai Patrascu. 2010. Towards polynomial lower bounds for dynamic problems.
In Proceedings of ACM Symposium on Theory of Computing (STOC). 603–610.

[47] Saladi Rahul and Yufei Tao. 2016. Efficient Top-k Indexing via General Reduc-
tions. In Proceedings of ACM Symposium on Principles of Database Systems
(PODS). 277–288.

[48] Yufei Tao and Cheng Sheng. 2014. Fast Nearest Neighbor Search with Keywords.
IEEE Transactions on Knowledge and Data Engineering (TKDE) 26, 4 (2014),
878–888.

[49] Subodh Vaid, Christopher B. Jones, Hideo Joho, and Mark Sanderson. 2005.
Spatio-textual Indexing for Geographical Search on the Web. In Proceedings of
Symposium on Advances in Spatial and Temporal Databases (SSTD), Vol. 3633.
218–235.

[50] Dingming Wu, Gao Cong, and Christian S. Jensen. 2012. A framework for efficient
spatial web object retrieval. The VLDB Journal 21, 6 (2012), 797–822.

[51] Dingming Wu, Man Lung Yiu, Gao Cong, and Christian S. Jensen. 2012. Joint
Top-K Spatial Keyword Query Processing. IEEE Transactions on Knowledge and
Data Engineering (TKDE) 24, 10 (2012), 1889–1903.

[52] Chengyuan Zhang, Ying Zhang, Wenjie Zhang, and Xuemin Lin. 2016. Inverted
Linear Quadtree: Efficient Top K Spatial Keyword Search. IEEE Transactions on
Knowledge and Data Engineering (TKDE) 28, 7 (2016), 1706–1721.

[53] Dongxiang Zhang, Chee-Yong Chan, and Kian-Lee Tan. 2014. Processing spatial
keyword query as a top-k aggregation query. In International Conference on
Research and Development in Information Retrieval (SIGIR). 355–364.

APPENDIX
A FRIEDGUT’S INEQUALITY
Let 𝑎1, 𝑎2, ..., 𝑎𝑛 and 𝑏1, 𝑏2, ..., 𝑏𝑛 be non-negative real values where
𝑛 ≥ 1. For any real value 𝜙 ∈ [0, 1], it holds [29] that

𝑛∑︁
𝑖=1

𝑎
𝜙

𝑖
𝑏
1−𝜙
𝑖

≤
(
𝑛∑︁
𝑖=1

𝑎𝑖

)𝜙
·
(
𝑛∑︁
𝑖=1

𝑏𝑖

)1−𝜙
. (13)

B SUPPLEMENTARY PROOFS FOR
SECTION 3

Space Consumption. T itself obviously uses 𝑂 (𝑁) space. The total
space of all the materialized 𝐷act

𝑢 (w) — ranging over all nodes 𝑢 in
T and keywords w ∈ [1,𝑊] — is 𝑂 (𝑁) because every object 𝑒 ∈ 𝐷

can appear in at most |𝑒.Doc| materialized sets. As explained in
Section 3.2, the secondary structure𝑇𝑢 at each node 𝑢 uses 𝑂 (𝑁 1/𝑘)
words plus 𝑂 (𝑁𝑢) bits. We will prove

∑
node 𝑢 𝑁 1/𝑘 = 𝑂 (𝑁) and∑

node 𝑢 𝑁𝑢 = 𝑂 (𝑁 log𝑁). The space of all the secondary structures
is thus 𝑂 (𝑁) words plus 𝑂 (𝑁 log𝑁) bits, which is 𝑂 (𝑁) words.

In fact,
∑

node 𝑢 𝑁𝑢 = 𝑂 (𝑁 log𝑁) is somewhat obvious because
T has 𝑂 (log𝑁) levels, and the sum of 𝑁𝑢 for all the nodes 𝑢 at the
same level is 𝑂 (𝑁) (an object can appear in the active set of at most
one node at the same level).

Now, we show
∑

node 𝑢 𝑁 1/𝑘 = 𝑂 (𝑁). At each level 𝑖 ∈ [0, ℎ]
where ℎ := 𝑂 (1) + log2 𝑁 is the maximum level of T , there are at
most 2𝑖 nodes 𝑢 in T , each satisfying 𝑁𝑢 = 𝑂 (𝑁 /2𝑖). Therefore∑︁

node 𝑢

𝑁
1/𝑘
𝑢 =

ℎ∑︁
𝑖=0

∑︁
node 𝑢 at level 𝑖

𝑂 (𝑁 1/𝑘
𝑢)

=

ℎ∑︁
𝑖=0

𝑂

(
2𝑖 · (𝑁 /2𝑖)1/𝑘

)
=

ℎ∑︁
𝑖=0

𝑂

(
2𝑖 (1−1/𝑘) · 𝑁 1/𝑘

)
= 𝑂 (𝑁) .

Correctness of the Query Algorithm. Consider an arbitrary object
𝑒 ∈ 𝑞 ∩ 𝐷 (w1, ...,w𝑘). We will prove that our algorithm manages to
output 𝑒. For each 𝑖 ∈ [1, 𝑘], pinpoint a node 𝑢𝑖 as follows. If 𝑒 is in
some materialized 𝐷act

𝑣 (w𝑖), set 𝑢𝑖 to the node 𝑣 at which 𝐷act
𝑣 (w𝑖)

is defined; otherwise, set 𝑢 to the node 𝑣 whose pivot set contains 𝑒.
All of 𝑢1, ..., 𝑢𝑘 must be on the same root-to-leaf path of T (because
their active sets all contain 𝑒). Assume, w.l.o.g., that 𝑢1 is the node
closest to the root among 𝑢1, ..., 𝑢𝑘 .

Let 𝜋 be the path from the root of to 𝑢1. We will show that our
algorithm visits every node 𝑣 on 𝜋 . This is obvious if 𝑣 is the root.
Now consider 𝑣 as a non-root node. By the way 𝑢1, ..., 𝑢𝑘 are defined,
all the keywords w1, ...,w𝑘 are large at the parent of 𝑣 . We must
have

⋂𝑘
𝑖=1 𝐷

act
𝑣 (w𝑖) ≠ ∅, because at least 𝑒 is in the intersection.

Furthermore, the cell Δ𝑣 of 𝑣 must contain 𝑒 and, hence, intersect
with 𝑞. It thus follows that our algorithm visits 𝑣 for sure.

We can now complete the proof by observing that the algorithm
outputs 𝑒 during its visit to 𝑢1.

Proof of Lemma 9. Let us first consider that the search rectangle 𝑞
does not cover the whole space R2. In this scenario, at every covered
leaf 𝑧 of Tqry , our algorithm outputs at least one distinct object in
its active set 𝐷act

𝑧 . To explain, let 𝑢 be the parent of 𝑧 in T .15. The
algorithm’s visit to 𝑧 suggests that

⋂𝑘
𝑖=1 𝐷

act
𝑧 (w𝑖) must be non-empty

(recall that w1, ...,w𝑘 are the query keywords). Moreover, 𝑧 being
covered means that the cell Δ𝑧 is contained in 𝑞. Hence, all the
objects in

⋂𝑘
𝑖=1 𝐷

act
𝑧 (w𝑖) must be reported. None of those objects

15The parent exists because 𝑧 cannot be the root, as the root’s cell is R2.

Indexing for Keyword Search with Structured Constraints PODS ’23, June 18–23, 2023, Seattle, WA, USA

can belong to the active set of another covered leaf because the active
sets of all covered leaves are disjoint.

It thus follows that Tqry has at most OUT covered leaves. If
OUT = 0, Tqry has no covered leaves and, hence, no covered internal
nodes as well (because any leaf descendant of a covered internal
node must also be covered). The lemma trivially holds in the absence
of covered nodes.

When OUT > 0, Tqry having at most OUT covered leaves means
that Tqry has 𝑂 (OUT log(𝑁 /OUT)) covered internal nodes.16 We
spend constant time on each of those internal nodes and, hence,
𝑂 (OUT log(𝑁 /OUT)) time in total. On the other hand, at every
covered leaf 𝑧, we pay a cost of 𝑂 (𝑁 1−1/𝑘

𝑧). The sum of 𝑁𝑧 for all
such leaves is 𝑁 because their active sets are disjoint. Thus, the total
cost spent on the covered leaves is asymptotically∑︁

covered leaf 𝑧 of Tqry
𝑁
1−1/𝑘
𝑧 =

∑︁
covered leaf 𝑧 of Tqry

𝑁
1−1/𝑘
𝑧 · 11/𝑘

(using (13)) ≤ 𝑁 1−1/𝑘OUT1/𝑘 .

We can now conclude that the total cost on the covered nodes of Tqry
is 𝑂 (OUT log(𝑁 /OUT) + 𝑁 1−1/𝑘OUT1/𝑘) = 𝑂 (𝑁 1−1/𝑘OUT1/𝑘).

Finally, let us consider the case where 𝑞 = R2. If the root of
T is not the only node in Tqry , the above analysis applies directly.
Otherwise, it is easy to verify that the query time is 𝑂 (𝑁 1−1/𝑘).

Proof of Lemma 10. Consider any vertical line 𝑞 and any leaf 𝑧 of
Tcross. Let 𝜋 be the root-to-𝑧 path of Tcross. At most one node on 𝜋

can have (i) 𝑞 as its split line and (ii) two child nodes in Tcross. To
explain, let 𝑢 be the highest node on 𝜋 satisfying conditions (i) and
(ii). For every proper descendant 𝑣 of 𝑢 on 𝜋 , 𝑞 is either disjoint
with Δ𝑣 or passes a vertical boundary of Δ𝑣 . In the former case, the
split line of Δ𝑣 obviously cannot be 𝑞. In the latter case, if 𝑞 is the
split line of Δ𝑣 , then one of the rectangles produced by splitting Δ𝑣

with 𝑞 must be contained in 𝑞. Hence, at most one child of 𝑣 can be
crossing (the other child must be covered).

The above observation allows us to compact Tcross in a way
slightly different from Section 3.3: for each even-level internal node
𝑢 in Tcross which has only one child in Tcross, delete 𝑢 and make the
parent of 𝑢 the new parent of the only child of 𝑢. Let T ′

cross be the
tree after the compaction.

For each leaf 𝑧 of Tcross, its new level in T ′
cross — denoted as

level′ (𝑧) — is either ⌊level(𝑧)/2⌋ or ⌊level(𝑧)/2⌋ + 1. We have∑︁
leaf 𝑧 of Tcross

√︂
1

2level (𝑧)
≤

∑︁
leaf 𝑧 of T′

cross

2−(level′ (𝑧)−1) ≤ 2.

where the last inequality used the fact [23] that, in any binary tree,∑
leaf 𝑧 1/2level of 𝑧 in the tree ≤ 1. Therefore, the expression in (8)

evaluates to 𝑂 (𝑁 1−1/𝑘).

16Consider the tree obtained by deleting all the crossing nodes in Tqry . This is a binary
tree with at most OUT leaves and 𝑂 (log𝑁) height. It is easy to verify that the tree can
have 𝑂 (OUT log(𝑁 /OUT)) internal nodes.

C SUPPLEMENTARY PROOFS FOR
SECTION 4

Proof of Proposition 1. Our construction, based on 𝑓 -balanced cuts
with the design of 𝑓 in (10), guarantees for any node 𝑢 of T :

weight (𝐷act
𝑢) ≤ 𝑁∏level (𝑢)−1

𝑖=0 (2 · 2𝑘𝑖)
(14)

=
𝑁

2Θ(𝑘 level (𝑢))
.

Furthermore, weight (𝐷act
𝑢) ≥ |𝐷act

𝑢 | ≥ 1. It thus follows that
level(𝑢) = 𝑂 (log log𝑁).

Proof of Proposition 2. By calculating precisely the denominator
on the right hand side of Inequality (14), we get:

weight (𝐷act
𝑢) ≤ 𝑁

2level (𝑢) · 2
𝑘 level (𝑢) −1

𝑘−1

= 𝑂

(
𝑁

2level (𝑢) · 2
𝑘 level (𝑢)

𝑘−1

)
= 𝑂

(
𝑁

2level (𝑢) · 𝑓 1/(𝑘−1)𝑢

)
.

Rearranging the terms proves the proposition.

Proof of Proposition 3. If 𝑢 is an internal node of T , we must have
weight (𝐷act

𝑢) ≥ 𝑓𝑢 . To see why, consider an arbitrary child node
𝑣 of 𝑢. Our construction algorithm ensures 1 ≤ weight (𝐷act

𝑣) ≤
weight (𝐷act

𝑢)/𝑓𝑢 , which implies weight (𝐷act
𝑢) ≥ 𝑓𝑢 . Using this in-

equality, we can derive 𝑓𝑢 · 𝑓 1/(𝑘−1)𝑢 = 𝑂 (𝑁) from Proposition 2,
which simplifies into 𝑓𝑢 = 𝑂 (𝑁 1−1/𝑘).

Now, consider𝑢 as a leaf node. If weight (𝐷act
𝑢) > 𝑁 1−1/𝑘 , Propo-

sition 2 indicates 𝑓
1/(𝑘−1)
𝑢 = 𝑂 (𝑁 1/𝑘), which again simplifies into

𝑓𝑢 = 𝑂 (𝑁 1−1/𝑘). If, on the other hand, weight (𝐷act
𝑢) ≤ 𝑁 1−1/𝑘 ,

then trivially 𝑓𝑢 ≤ |𝐷act
𝑢 | ≤ weight (𝐷act

𝑢) ≤ 𝑁 1−1/𝑘 .

D PROOF OF THEOREM 5
This section will utilize our index transformation framework to
convert the partition tree [13] to an index for answering LC-KW
queries with the performance guarantees in Theorem 5.

We will deal with an alternative problem, which captures the
essence of LC-KW. Let us first recall that a 𝑑-simplex is a polyhedron
in R𝑑 with 𝑑 + 1 facets. For example, a 0-simplex is a point, a 1-
simplex is a line segment, a 2-simplex is a triangle, a 3-simplex is a
tetrahedron, etc. The problem we will focus on is:

Simplex Reporting with Keywords (SP-KW). 𝐷 is a set of points
in R𝑑 , where 𝑑 ≥ 1 is a constant. Fix an integer 𝑘 ≥ 2. Given
a 𝑑-simplex 𝑞 in R𝑑 and keywords w1, ...,w𝑘 , a query returns
𝑞 ∩ 𝐷 (w1, ...,w𝑘), where 𝐷 (w1, ...,w𝑘) is given in (1).

We will prove:

THEOREM 12. For SP-KW with 𝑑 ≤ 𝑘 , there is an index of𝑂 (𝑁)
space that answers a query in 𝑂 (𝑁 1−1/𝑘 · (log𝑁 + OUT1/𝑘)) time,
where 𝑁 is the input size, 𝑘 is the number of query keywords, and
OUT is the number of points reported. For SP-KW with 𝑑 > 𝑘 , there
is an index of 𝑂 (𝑁) space that answers a query in 𝑂 (𝑁 1−1/𝑑 +
𝑁 1−1/𝑘 · OUT1/𝑘) time.

PODS ’23, June 18–23, 2023, Seattle, WA, USA Shangqi Lu and Yufei Tao

The above result implies Theorem 5. To understand why, notice
that, in LC-KW, the set of locations in R𝑑 satisfying 𝑠 := 𝑂 (1) linear
constraints forms a polyhedron with 𝑠 facets. Such a polyhedron can
be partitioned into a constant number of 𝑑-simplicies (the constant
depends on 𝑠 and the dimensionality 𝑑). We can then find the points
in 𝐷 satisfying all the constraints by issuing an SP-KW query for
every 𝑑-simplex. It is easy to verify from Theorem 12 that the space
and query complexities are as claimed in Theorem 5.

Next, we will go through the four steps of our framework to
establish Theorem 12.

D.1 Step 1: Identifying a Space-Partitioning Index
Let us first review the partition tree [13]. Denote by 𝑃 a set of 𝑁
points in R𝑑 . A partition tree on 𝑃 is a tree T in which there are 𝑁

leaves and each internal node has at most 𝑓 child nodes where 𝑓 ≥ 2
is a constant. Every leaf stores a distinct point of 𝑃 . Given a node 𝑢,
we use 𝑃𝑢 to represent the set of points stored in the subtree of 𝑢.

The partition tree is space-partitioning because

• every node 𝑢 in T is associated with a 𝑑-simplex Δ𝑢 as its
cell, which covers all the points in 𝑃𝑢 ;

• the cell of the root is the entire R𝑑 ;

• for every internal node 𝑢, the cells of its child nodes are
interior disjoint and have Δ𝑢 as their union.

Given a node 𝑢, we use level(𝑢) to denote its level. In general, the
partition tree guarantees |𝑃𝑢 | = 𝑂 (𝑁 /𝑓 level (𝑢)) for all nodes 𝑢. It
thus follows that T has height 𝑂 (1) + log𝑓 𝑁 .

D.2 Step 2: Conversion under General Position
Next, we transform the partition tree into an SP-KW index, assuming
𝐷 in general position, which here means that no 𝑑 + 1 points in 𝐷

fall on the same hyperplane in R𝑑 . Let𝑊 := |⋃𝑒∈𝐷 𝑒.Doc|; w.l.o.g.,
each keyword is treated as an integer in [1,𝑊].

Verbose Set. As in Section 3.2, create 𝑃 — the verbose version of
𝐷 — by inserting |𝑒.Doc| copies of each point 𝑒 ∈ 𝐷. Again, we
will reserve symbol “𝑒” and term “object” for the elements of 𝐷,
as opposed to symbol “𝑝” and term “point” for the elements of 𝑃 .
Create a partition tree T on 𝑃 .

Active and Pivot Sets. For each node 𝑢 in T , we define its active
set 𝐷act

𝑢 and pivot set 𝐷𝑝𝑣𝑡
𝑢 by induction. If 𝑢 is the root, 𝐷act

𝑢 := 𝐷.
Inductively, consider 𝑢 as an internal node whose 𝐷act

𝑢 has been
properly defined, but not yet for 𝐷𝑝𝑣𝑡

𝑢 . Let 𝑣1, ..., 𝑣 𝑓 be the child
nodes of 𝑢. Then:

• 𝐷
𝑝𝑣𝑡
𝑢 is the set of objects in 𝐷act

𝑢 falling on the boundary of
Δ𝑣1 ,Δ𝑣2 , ..., or Δ𝑣𝑓 . As 𝐷 is in general position, the pivot set
of 𝑢 has only a constant number of objects.

• For each 𝑖 ∈ [1, 𝑓], 𝐷act
𝑣𝑖

is the set of objects in 𝐷act
𝑢 that fall

in the interior of Δ𝑣𝑖 .

For every leaf 𝑧 of T , define 𝐷𝑝𝑣𝑡
𝑧 := 𝐷act

𝑧 .

Large and Small Keywords at a Node. Given a keyword w ∈
[1,𝑊] and a node 𝑢 in T , define 𝐷act

𝑢 (w) := {𝑒 ∈ 𝐷act
𝑢 | w ∈ 𝑒.Doc}

and 𝑁𝑢 :=
∑
𝑒∈𝐷act

𝑢
|𝑒.Doc| ≤ |𝑃𝑢 | = 𝑂 (𝑁 /𝑓 level (𝑢)). We say that w

is “large” at 𝑢 if |𝐷act
𝑢 (w) | ≥ 𝑁

1−1/𝑘
𝑢 , or “small” at 𝑢, otherwise.

Structure. Each node𝑢 of T is associated with a secondary structure
𝑇𝑢 , whose first purpose is to store the pivot set 𝐷𝑝𝑣𝑡

𝑢 . If 𝑢 is a leaf,
𝑇𝑢 has no other functionality. Otherwise, 𝑇𝑢 should also support two
operations in constant time:

• given a keyword w, return whether w is large at 𝑢;

• given (i) 𝑘 distinct keywords w1, ...,w𝑘 that are large at 𝑢, and
(ii) a child node 𝑣 of 𝑢, return if

⋂𝑘
𝑖=1 𝐷

act
𝑣 (w𝑖) is empty.

Finally, we materialize an active set 𝐷act
𝑢 (w) — where 𝑢 ranges over

all the nodes in T and w ranges over [1,𝑊] — if w is small at 𝑢
but is large at all the proper ancestors of 𝑢. The overall space is
𝑂 (𝑁) words, as can be proved by adapting the space analysis of
Appendix B in a straightforward manner.

D.3 Step 3: Bounding the Crossing Sensitivity
Algorithm. To answer a query with 𝑑-simplex 𝑞 and keywords
w1, ...,w𝑘 , we start by visiting the root of T .

In general, to “visit” a node𝑢, we read every object 𝑒 in the node’s
pivot set, and report 𝑒 if 𝑒 ∈ 𝑞 and 𝑒.Doc contains all of w1, ...,w𝑘 .
If 𝑢 is a leaf, the visit is complete. If 𝑢 is internal, we continue
by using 𝑇𝑢 to decide whether w1, ...,w𝑘 are all large at 𝑢. Suppose
that this is true. Then, for each child 𝑣 of 𝑢, we recursively visit 𝑣
if

⋂𝑘
𝑖=1 𝐷

act
𝑣 (w𝑖) ≠ ∅ and 𝑞 ∩ Δ𝑣 ≠ ∅. Consider now the opposite

where at least one of w1, ...,w𝑘 — say, w1 — is small at 𝑢. In this
case, 𝐷act

𝑢 (w1) must have been materialized. We read every object
𝑒 ∈ 𝐷act

𝑢 (w1) and report 𝑒 if 𝑒 ∈ 𝑞 and 𝑒.Doc has all the 𝑘 keywords.

Analysis. Let Tqry be the tree formed by the nodes visited. The
algorithm spends constant time at every internal node of Tqry and
𝑂 (𝑁𝑧

1−1/𝑘) time at every leaf node 𝑧 of Tqry . The cell Δ𝑢 of every
node 𝑢 in Tqry must intersect with 𝑞. We classify 𝑢 as covered if Δ𝑢
is covered by 𝑞, or crossing, otherwise.

By adapting the proof of Lemma 9, the reader can verify that the
total cost spent on the covered nodes is𝑂 (𝑁 1−1/𝑘 (1+OUT1/𝑘)). To
analyze the cost on the crossing nodes, let Tcross be the tree obtained
from Tqry by deleting all the covered nodes. Define the crossing
sensitivity of 𝑞 exactly as in (7).

Crossing Sensitivity of the Partition Tree. We will prove that 𝑞 has
crossing sensitivity𝑂 (𝑁 1−1/𝑑) when 𝑘 ≤ 𝑑−1, or𝑂 (𝑁 1−1/𝑘 log𝑁)
when 𝑘 ≥ 𝑑 . Combining these facts with the earlier discussion yields
the query cost in Theorem 12.

By standard partition-tree analysis, Tcross has𝑂 (𝑁 1−1/𝑑) nodes17.
Hence, the term “

∑
internal 𝑢 of Tcross 1” in (7) is 𝑂 (𝑁 1−1/𝑑). The sub-

sequent discussion will prove:∑︁
crossing leaf 𝑧

𝑁
1−1/𝑘
𝑧 =

{
𝑂 (𝑁 1−1/𝑘 log𝑁) if 𝑑 ≤ 𝑘

𝑂 (𝑁 1−1/𝑑) if 𝑑 > 𝑘
(15)

which validates our claim about the crossing sensitivity of 𝑞.

17Any 𝑑-simplex can intersect, but not fully covering, the cells of 𝑂 (𝑁 1−1/𝑑) nodes in
a partition tree on 𝑁 points.

Indexing for Keyword Search with Structured Constraints PODS ’23, June 18–23, 2023, Seattle, WA, USA

To proceed, we need a property of the partition tree established
by Chan [13]. Fix an arbitrary level ℓ of T (recall that root is at
level 0). Chan (in proving Theorem 3.2 of [13]) showed that, for any
hyperplane in R𝑑 , the number of level-ℓ nodes whose cells intersect
the hyperplane is

𝑂 (𝑓 ℓ (1−
1
𝑑
) + 𝑓 ℓ (1−

1
𝑑−1+𝛿) log𝑁) (16)

where 𝛿 > 0 is an arbitrarily small constant. As each facet of 𝑞
is enclosed by a hyperplane, the number of level-ℓ nodes whose
cells intersect the facet is also bounded by (16). Notice that if 𝑢 is
a crossing node, its cell Δ𝑢 must intersect at least one facet of 𝑞. It
thus follows that, at level ℓ of T , the number of crossing nodes is
bounded by (16).

Setting ℎ := 𝑂 (1) + log𝑓 𝑁 to be the maximum level in T , we can
now derive ∑︁

crossing leaf 𝑧

𝑁
1− 1

𝑘
𝑧

=

ℎ∑︁
ℓ=0

∑︁
crossing leaf 𝑧 at level ℓ

𝑁
1− 1

𝑘
𝑧

=

ℎ∑︁
ℓ=0

∑︁
crossing leaf 𝑧 at level ℓ

𝑂

(
𝑁

𝑓 ℓ

)1− 1
𝑘

= 𝑂

(
ℎ∑︁
ℓ=0

(
𝑁

𝑓 ℓ

)1− 1
𝑘 (

𝑓 ℓ (1−
1
𝑑
) + 𝑓 ℓ (1−

1
𝑑−1+𝛿) log𝑁

))
(using (16))

= 𝑂 (𝑁 1− 1
𝑘) ·

[(
ℎ∑︁
ℓ=0

𝑓 ℓ (
1
𝑘
− 1

𝑑
)
)
+

(
ℎ∑︁
ℓ=0

log𝑁

𝑓 ℓ (
1

𝑑−1 −
1
𝑘
−𝛿)

)]
. (17)

Let us first analyze
∑ℎ
ℓ=0 𝑓

ℓ (1
𝑘
− 1

𝑑
) . When 𝑘 > 𝑑, the sum is

dominated by the term at ℓ = 0, which is 𝑂 (1). When 𝑘 = 𝑑 , the sum
is 𝑂 (ℎ) = 𝑂 (log𝑁). When 𝑘 < 𝑑 , the sum is dominated by the term
at ℓ = ℎ, which is 𝑂 (𝑓 ℎ (

1
𝑘
− 1

𝑑
)) = 𝑂 (𝑁

1
𝑘
− 1

𝑑).

Let us turn attention to
∑ℎ
ℓ=0 (log𝑁)/𝑓 ℓ (

1
𝑑−1 −

1
𝑘
−𝛿) . When 𝑘 >

𝑑 − 1, the sum is dominated by the term at ℓ = 0, which is 𝑂 (log𝑁).
When 𝑘 ≤ 𝑑 − 1, the term is dominated by the term at ℓ = ℎ, which
is 𝑂 (log𝑁 · 𝑓 ℎ (𝛿+

1
𝑘
− 1

𝑑−1)) = 𝑂 (log𝑁 · 𝑁𝛿+ 1
𝑘
− 1

𝑑−1).

Combining the above, we can see that when 𝑘 ≥ 𝑑, (17) is
bounded by 𝑂 (𝑁 1−1/𝑘 log𝑁); when 𝑘 ≤ 𝑑 − 1, (17) is bounded
by 𝑂 (𝑁 1− 1

𝑘 (𝑁
1
𝑘
− 1

𝑑 + log𝑁 · 𝑁𝛿+ 1
𝑘
− 1

𝑑−1)) = 𝑂 (𝑁 1− 1
𝑘 · 𝑁

1
𝑘
− 1

𝑑) =
𝑂 (𝑁 1−1/𝑑). This establishes (15).

D.4 Step 4: Removing General Position
We will remove the general position assumption that 𝐷 has no 𝑑 + 1
objects lying on the same hyperplane in R𝑑 . Before continuing, let
us make a crucial observation. The index presented in Sections D.2
and D.3 — including both its algorithms and analysis — works as
long as two conditions are met for each node 𝑢 in the underlying
partition tree T :

(1) For every object 𝑒 ∈ 𝐷act
𝑢 , all the copies of 𝑒 in the verbose

set 𝑃 are stored in the subtree of 𝑢.

(2) Its pivot set 𝐷𝑝𝑣𝑡
𝑢 has a constant size.

When 𝐷 is not in general position, condition (2) may not hold. To
understand this, consider 𝑢 as an internal node with child nodes
𝑣1, ..., 𝑣 𝑓 . Recall that 𝐷𝑝𝑣𝑡

𝑢 consists of the objects in 𝐷act
𝑢 that fall on

the boundaries of cells Δ𝑣1 , ...,Δ𝑣𝑓 . The number of such objects may
be arbitrarily large without the general position assumption.

This issue can be remedied using the standard perturbation tech-
nique. At a high level, the technique works as follows in our context.
Suppose that we perturb (i.e., shift) each object in 𝐷 by a small
distance controlled by a parameter 𝜖 ≥ 0, such that 𝜖 = 0 means no
shifting. Denote by 𝐷 (𝜖) the data input obtained by perturbing 𝐷

under value 𝜖 (note: 𝐷 (0) = 𝐷). The perturbation can be done in a
way (e.g., [26]) to ensure that 𝐷 (𝜖) be in general position as long
as 0 < 𝜖 < 𝜖0, where 𝜖0 is a sufficiently small value (which may
depend on 𝐷). Let 𝑃 (𝜖) be the verbose version of 𝐷 (𝜖), and T (𝜖)
be the partition tree on 𝑃 (𝜖); note that T (0) is just the partition tree
on the verbose version 𝑃 of 𝐷. It is known that, when 0 < 𝜖 < 𝜖0,
T (𝜖) and T (0) are identical in the following sense:

• The trees T (0) and T (𝜖) are isomorphic to each other.

• A point 𝑝 ∈ 𝑃 is stored in the subtree of a node 𝑢 in T (0)
if and only if the perturbed version of 𝑝 in 𝑃 (𝜖) is stored in
the subtree of the node in T (𝜖) corresponding to 𝑢 under
isomorphism.

• The cell of each node in T (𝜖) can be expressed as a contin-
uous function of 𝜖 such that, when 𝜖 decreases to 0, the cell
becomes the cell of the corresponding node in T .

To remove the general position assumption, we perturb 𝐷 to 𝐷 (𝜖)
with an infinitesimally small 𝜖 > 0. Since 𝐷 (𝜖) is in general position,
T (𝜖) satisfies conditions (1) and (2). Assign active and pivot sets
for the nodes of T (𝜖) as described in Section D.2. Now, decrease 𝜖
all the way to 0, which morphs T (𝜖) into T (0). Each node in T (0)
retains the same pivot and active sets as its corresponding node in
T (𝜖). We thus have obtained an index on 𝐷 that fulfills conditions
(1) and (2), thereby completing the proof of Theorem 12.

Remark. The reader may wonder how perturbation “actually” reme-
dies the issue we were facing in the beginning. Consider again an
internal node 𝑢. Let 𝑣 be a child of 𝑢. There can still be many objects
falling on a facet of cell Δ𝑣 . However, if this happens, there must be
another child 𝑣 ′ of 𝑢 whose cell Δ𝑣′ is a degenerated simplex fully
contained in that facet of Δ𝑣 . Most objects on the facet have all their
copies (in the verbose set 𝑃) stored in the subtree of 𝑣 ′. Such objects
appear in the active set of 𝑣 ′, rather than in the pivot set of 𝑢.

E PROOF OF LEMMA 8
Let us first discuss the scenario where OUT ≥ 𝑁 (1− 1

𝑘
)/(1− 1

𝑘
+𝜖) .

Re-arranging the terms gives OUT ≥ 𝑁 1−1/𝑘 · OUT
1
𝑘
−𝜖 . In this

case, the complexity in (3) becomes 𝑂 (𝑁 1−1/𝑘 + OUT).

On the other hand, when OUT < 𝑁 (1− 1
𝑘
)/(1− 1

𝑘
+𝜖) , we can derive

OUT < 𝑁
1−(1/𝑘)

1−(1/𝑘)+𝜖

⇒ OUT(1/𝑘)−𝜖 < 𝑁
1−(1/𝑘)

1−(1/𝑘)+𝜖 · ((1/𝑘)−𝜖)

= 𝑁
(1−(1/𝑘))

(
1

1−(1/𝑘)+𝜖 −1
)

PODS ’23, June 18–23, 2023, Seattle, WA, USA Shangqi Lu and Yufei Tao

(using (1/𝑘)−𝜖
1−(1/𝑘)+𝜖 = 1

1−(1/𝑘)+𝜖 − 1)

= 𝑁
1−(1/𝑘)

1−(1/𝑘)+𝜖 −(1−(1/𝑘))

⇒ 𝑁 1−(1/𝑘) · OUT(1/𝑘)−𝜖 < 𝑁
1−(1/𝑘)

1−(1/𝑘)+𝜖

= 𝑁
1− 𝜖

1−(1/𝑘)+𝜖 .

Under the above condition, the complexity in (3) becomes
𝑂 (𝑁 1−1/𝑘 + 𝑁

1− 𝜖
1−(1/𝑘)+𝜖).

We now conclude that the query time is 𝑂 (𝑁 1−𝛿 + OUT) time
where 𝛿 = min{ 1

𝑘
, 𝜖
1−(1/𝑘)+𝜖 } in all cases.

F PROOFS OF COROLLARIES 3, 4, 6, AND 7
Proof of Corollary 3. A 𝑑-rectangle [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × ...× [𝑎𝑑 , 𝑏𝑑]
intersects another 𝑑-rectangle [𝑥1, 𝑦1] × [𝑥2, 𝑦2] × ...× [𝑥𝑑 , 𝑦𝑑] if and
only if the 2𝑑-dimensional point (𝑎1, 𝑏1, 𝑎2, 𝑏2, ..., 𝑎𝑑 , 𝑏𝑑) falls in the
2𝑑-rectangle (∞, 𝑦1] × [𝑥1,∞) × (∞, 𝑦2] × [𝑥2,∞) × ... × (∞, 𝑦𝑑] ×
[𝑥𝑑 ,∞). Hence, the 𝑑-dimensional RR-KW problem can be solved
by a 2𝑑-dimensional ORP-KW index. Corollary 3 thus follows from
Theorems 1 and 2.

Proof of Corollary 4. Given a 𝑑-rectangle 𝐵 in R𝑑 , keywords
w1, ...,w𝑘 , and an integer 𝑡 ≥ 1, our index in Theorems 1 and 2
can be deployed to detect whether 𝐵 ∩ 𝐷 (w1, ...,w𝑘) has size at least
𝑡 in𝑂 (𝑁 1−1/𝑘 ·𝑡1/𝑘) time. For this purpose, simply run an ORP-KW
query with parameters 𝐵 and w1, ...,w𝑘 . If OUT := |𝐵∩𝐷 (w1, ...,w𝑘) |
is less than 𝑡 , the query must terminate in 𝑂 (𝑁 1−1/𝑘 · 𝑡1/𝑘) time. If
it does not finish after𝑂 (𝑁 1−1/𝑘 · 𝑡1/𝑘) time, we manually terminate
it and declare OUT ≥ 𝑡 .

Given a point 𝑞 ∈ R𝑑 and a radius 𝑟 ≥ 0, let 𝐵(𝑞, 𝑟) — an 𝐿∞-
ball — be the set of locations in R𝑑 with 𝐿∞ distance at most 𝑟
to 𝑞. Note that 𝐵(𝑞, 𝑟) is a 𝑑-rectangle. Consider an 𝐿∞NN-KW
query with parameters 𝑞 (a point), 𝑡 (an integer in [1, |𝐷 |]), and
w1, ...,w𝑘 (keywords). We want to find the smallest 𝑟 such that
𝐵(𝑞, 𝑟) ∩ 𝐷 (w1, ...,w𝑘) has size at least 𝑡 . As shown below, this can
be done by performing binary search in a set of 𝑂 (𝑁) “candidate
radius values”. We will test 𝑂 (log𝑁) values of 𝑟 , and each test (as
mentioned) takes 𝑂 (𝑁 1−1/𝑘 · 𝑡1/𝑘) time using an ORP-KW index.
The total query time is therefore 𝑂 (log𝑁 · 𝑁 1−1/𝑘 · 𝑡1/𝑘)

Formally, a candidate radius is defined as the coordinate differ-
ence between 𝑞 and an object 𝑒 ∈ 𝐷 on one of the 𝑑 dimensions. In
other words, each object gives 𝑑 candidate radii such that the total
number of candidate radii is 𝑑 |𝐷 | = 𝑂 (𝑁). Next, we will proceed by
first making the general position assumption that all those candidate
radii are distinct, and then removing the assumption in the end.

If 𝑒 is the 𝑡-th closest object (under 𝐿∞ distance) to 𝑞 among
all the objects in 𝐷 (w1, ...,w𝑘), the 𝐿∞ distance between 𝑒 and 𝑞

is one of the candidate radii. Our job is to identify the smallest
candidate radius 𝑟 such that 𝐵(𝑞, 𝑟) ∩ 𝐷 (w1, ...,w𝑘) has at least 𝑡
objects. To permit binary search, we need a method to select the 𝑖-th
— for any 𝑖 ∈ [1, 𝑑 |𝐷 |] — smallest value from all the 𝑑 |𝐷 | candidate
values in 𝑂 (𝑁 1−1/𝑘) time. This target complexity is very loose for
such a rudimentary task, which is straightforward to accomplish
in 𝑂 (polylog𝑁) time by resorting to 𝑑 binary search trees, each
created on the coordinates of a different dimension.

Finally, the general position assumption can be removed by con-
verting the coordinates to the rank space. We omit the standard
details here.

Proof of Corollary 6. The lifting technique [8] (see also Section
11.6 of [24]) maps each point 𝑝 ∈ R𝑑 to a point 𝑝′ ∈ R𝑑+1 such that,
for any sphere 𝐵 in R𝑑 , 𝑝 falls in 𝐵 if and only if 𝑝′ is covered by a
(𝑑 + 1)-simplex in R𝑑+1 that is computed based on 𝐵 (the simplex
is a degenerated one, or more specifically, a halfspace in R𝑑+1).
Hence, the 𝑑-dimensional SRP-KW problem can be solved by a
(𝑑 + 1)-dimensional LC-KW index. Corollary 6 thus follows from
Theorem 5.

Proof of Corollary 7. We will combine Corollary 6 with binary
search in a fashion similar to how we used Theorems 1 and 2 to
prove Corollary 4.

We consider only the case where 𝑑 > 𝑘 − 1 because the 𝑑 ≤ 𝑘 − 1
case can be settled by modifying our argument in a straightforward
manner. Given a sphere 𝐵 in R𝑑 , keywords w1, ...,w𝑘 , and an integer
𝑡 ≥ 1, our index in Corollary 6 can be deployed to detect whether
𝐵 ∩ 𝐷 (w1, ...,w𝑘) has size at least 𝑡 in 𝑂 (𝑁 1− 1

𝑑+1 + 𝑁 1−1/𝑘 · 𝑡1/𝑘)
time (following the ideas in the proof of Corollary 4).

Given a point 𝑞 ∈ N𝑑 and a radius 𝑟 ≥ 0, let 𝐵(𝑞, 𝑟) — an “𝐿2-
ball” — be the set of locations in R𝑑 with Euclidean distance at
most 𝑟 to 𝑞. Note that 𝐵(𝑞, 𝑟) is a sphere in R𝑑 . Consider an 𝐿2NN-
KW query with parameters 𝑞 (a point), 𝑡 (an integer in [1, |𝐷 |]),
and w1, ...,w𝑘 (keywords). We want to find the smallest 𝑟 such that
𝐵(𝑞, 𝑟) ∩ 𝐷 (w1, ...,w𝑘) has size at least 𝑡 .

We will proceed by making the general position assumption
that the objects in 𝐷 have distinct Euclidean distances to 𝑞; the
assumption will be removed in the end. Recall that N is the set
of 𝑂 (log𝑁)-bit integers. The distance between any two points
in N𝑑 has 𝑁𝑂 (1) possibilities, each we call a candidate radius.
We perform binary search to identify the smallest candidate ra-
dius 𝑟 such that 𝐵(𝑞, 𝑟) ∩ 𝐷 (w1, ...,w𝑘) has at least 𝑡 objects. As
𝑂 (log𝑁) distances need to be tested, the total query time is
𝑂 (log𝑁 · (𝑁 1− 1

𝑑+1 + 𝑁 1−1/𝑘 · 𝑡1/𝑘)).

Finally, the general position assumption can be removed with
infinitesimal perturbation. We omit the standard details here.

G TIGHTNESS OF COROLLARIES 4 AND 7
We will discuss only Corollary 4 because a similar argument applies
to Corollary 7.

Our objective is to argue that, for 𝐿∞NN-KW, no structure of
𝑂 (𝑁 polylog𝑁) space can answer a query in𝑂 (𝑁 1−1/𝑘𝑡 (1/𝑘)−𝜖 +𝑡)
time, no matter how small the constant 𝜖 > 0 is, subject to the strong
set-intersection and strong 𝑘-set-disjointness conjectures. Assume,
on the contrary, that such a structure exists. Next, we will use it to
obtain a 𝑘-SI reporting index of 𝑂 (𝑁 polylog𝑁) space whose query
complexity is given in (3). As discussed in Section 1.2, such a 𝑘-SI
index cannot exist, subject to the aforementioned conjectures.

Given an instance of 𝑘-SI with sets 𝑆1, ..., 𝑆𝑚 , we generate 𝐷 :=⋃𝑚
𝑖=1 𝑆𝑖 and 𝑒.Doc := {𝑖 | 𝑒 ∈ 𝑆𝑖 } for each 𝑒 ∈ 𝐷, and then map

Indexing for Keyword Search with Structured Constraints PODS ’23, June 18–23, 2023, Seattle, WA, USA

each object 𝑒 ∈ 𝐷 to an arbitrary point in N𝑑 . Create the provided
𝐿∞NN-KW index on 𝐷 .

Given a 𝑘-SI reporting query with set ids w1, ...,w𝑘 , we reduce it
to 𝐿∞NN-KW by executing the following steps, starting with 𝑡 := 1.

• Issue an 𝐿∞NN-KW query with an arbitrary point 𝑞 ∈ N𝑑 ,
the current value of 𝑡 , and keywords w1, ...,w𝑘 .

• If the 𝐿∞NN-KW query reports less than 𝑡 objects, it must
have found the entire 𝐷 (w1, ...,w𝑘). Otherwise, we double 𝑡
and repeat the previous step.

The algorithm terminates with 𝑡 = Θ(1 + OUT), where OUT :=
|𝐷 (w1, ...,w𝑘) |. The overall running time is asymptotically domi-
nated by the worst-case cost of the last query, which is 𝑂 (𝑁 1−1/𝑘 +
𝑁 1−1/𝑘OUT(1/𝑘)−𝜖 + OUT).

	Abstract
	1 Introduction
	1.1 New Indexing Results
	1.2 Tightness of Our Results

	2 Previous Work
	3 Index Transformation Framework
	3.1 Step 1: Identifying a Space-Partitioning Index
	3.2 Step 2: Conversion under General Position
	3.3 Step 3: Bounding the Crossing Sensitivity
	3.4 Step 4: Removing General Position
	3.5 Remarks

	4 A Dimension Reduction Technique under Keywords
	References
	A Friedgut's Inequality
	B Supplementary Proofs for Section 3
	C Supplementary Proofs for Section 4
	D Proof of Theorem 5
	D.1 Step 1: Identifying a Space-Partitioning Index
	D.2 Step 2: Conversion under General Position
	D.3 Step 3: Bounding the Crossing Sensitivity
	D.4 Step 4: Removing General Position

	E Proof of Lemma 8
	F Proofs of Corollaries 3, 4, 6, and 7
	G Tightness of Corollaries 4 and 7

