
On Join Sampling and the Hardness of Combinatorial
Output-Sensitive Join Algorithms

Shiyuan Deng, Shangqi Lu, and Yufei Tao
{sydeng,sqlu,taoyf}@cse.cuhk.edu.hk

Chinese University of Hong Kong
Hong Kong, China

ABSTRACT
We present a dynamic index structure for join sampling. Built for
an (equi-) join Q — let IN be the total number of tuples in the
input relations of Q — the structure uses �̃� (IN) space, supports
a tuple update of any relation in �̃� (1) time, and returns a uniform
sample from the join result in �̃� (IN𝜌∗/max{1,OUT}) time with high
probability (w.h.p.), where OUT and 𝜌∗ are the join’s output size
and fractional edge covering number, respectively; notation �̃� (.)
hides a factor polylogarithmic to IN. We further show how our result
justifies the 𝑂 (IN𝜌∗) running time of existing worst-case optimal
join algorithms (for full result reporting) even when OUT ≪ IN𝜌∗ .
Specifically, unless the combinatorial 𝑘-clique hypothesis is false, no
combinatorial algorithms (i.e., algorithms not relying on fast matrix
multiplication) can compute the join result in 𝑂 (IN𝜌∗−𝜖) time w.h.p.
even if OUT ≤ IN𝜖 , regardless of how small the constant 𝜖 > 0 is.

CCS CONCEPTS
• Theory of computation → Database query processing and
optimization (theory);

KEYWORDS
Join Algorithms, Sampling, Conjunctive Queries, Lower Bounds

ACM Reference Format:
Shiyuan Deng, Shangqi Lu, and Yufei Tao. 2023. On Join Sampling and the
Hardness of Combinatorial Output-Sensitive Join Algorithms. In Proceedings
of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems (PODS ’23), June 18–23, 2023, Seattle, WA, USA. ACM,
13 pages. https://doi.org/10.1145/3584372.3588666

1 INTRODUCTION
Joins, which combine the tuples across multiple tables based on
equality conditions1, are a fundamental operation in relational al-
gebra and a main performance bottleneck in database systems. Re-
search on joins has been a core field of database theory. Recent years
have witnessed significant advances in this field. Particularly, in

1The joins discussed in this paper are more precisely known as equi-joins, as opposed
to theta-joins that use non-equality conditions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODS ’23, June 18–23, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0127-6/23/06. . . $15.00
https://doi.org/10.1145/3584372.3588666

the realistic scenario where a join involves a constant number of at-
tributes, the community has discovered join algorithms [6, 36, 42, 44–
47, 54] that can achieve the asymptotically optimal performance
(sometimes up to a polylogarithmic factor) in the worst case.

Unfortunately, joins remain expensive even in the presence of
worst-case optimal algorithms. The culprit is the output size: a join
can produce Θ(IN𝜌∗) tuples [8] where IN denotes the total number
of tuples in the input relations, and 𝜌∗ represents the join’s fractional
edge covering number. We will defer the formal definition of 𝜌∗

to Section 2, whereas, for our introductory discussion, it suffices
to understand 𝜌∗ as a constant at least 1 that is decided by the
participating relations’ schemas. For instance, 𝜌∗ equals 2 for a join
between a relation with attributes A,B and another relation with
attributes B,C, suggesting that the join may output up to Θ(IN2)
tuples. Even just listing the result necessitates Ω(IN2) time in the
worst case (regardless of which join algorithm is deployed). The
phenomenon has a severe impact on database systems because the
value IN is gigantic in today’s big-data era, and the value 𝜌∗ can be
considerably higher for other joins.

Fortunately, many downstream tasks of the join operation do
not require a complete result, but can benefit significantly from
random samples. A classical example is “approximate aggregation”
(which arises in OLAP frequently), whose objective is to estimate
the result tuples’ total value on a selected attribute (e.g., sales). It
is well-known that an accurate estimate can be derived from a small
number of tuples drawn uniformly at random from the join result.
Another, more modern, example is “fair representative reporting”
[50], whose objective is to return a few tuples diverse enough to
adequately illustrate the join output’s overall distribution. Random
samples again serve the purpose very well.

Due to its profound importance, “join sampling” — the problem
of extracting a join result tuple uniformly at random — has attracted
considerable attention since its introduction by Chaudhuri et al. [18]
in 1999 (a survey will appear in Section 2). The state of the art is an
algorithm due to Chen and Yi [21] which, after an initial �̃� (IN)-time
preprocessing, draws a sample tuple in time

�̃� (IN𝜌∗+1/max{1,OUT}) (1)

with high probability (or w.h.p. for short) — namely, with a probabil-
ity at least 1−1/IN𝑐 for an arbitrarily large constant 𝑐 — where OUT
is the join’s output size (i.e., how many tuples in the join result),
and the notation �̃� (.) hides a factor polylogarithmic to IN. Consider-
ing that computing the join result takes Ω(IN𝜌∗) time in the worst
case, Chen and Yi’s method produces a sample in shorter time when
OUT ≫ IN. They called it an “intriguing open problem” to design
an index structure that, after �̃� (IN)-time preprocessing, can be used

https://doi.org/10.1145/3584372.3588666
https://doi.org/10.1145/3584372.3588666

PODS ’23, June 18–23, 2023, Seattle, WA, USA Shiyuan Deng, Shangqi Lu, and Yufei Tao

to extract a sample in

�̃� (IN𝜌∗/max{1,OUT}) (2)

time w.h.p., i.e., reducing the bound in (1) by a factor of 𝑂 (IN). In
[21], Chen and Yi managed to achieve the purpose for a special class
of joins, but not for arbitrary joins.

Overview of Our Results and Techniques. Given an arbitrary
join involving a constant number of attributes, we present an index
structure fulfilling all the requirements below:

• It occupies �̃� (IN) space and can be built in �̃� (IN) time.
• Its sampling time is bounded by (2) w.h.p. (without the value

of OUT given). The random samples obtained by repeatedly
applying our sampling algorithm are mutually independent.
• It is fully dynamic: inserting and deleting a tuple in any un-

derlying relation takes �̃� (1) time.
Our structure is different from all the previous solutions to join

sampling. In particular, we take a perspective that can be viewed
as the opposite of how Chen and Yi [21] approached the problem.
They construct a random tuple by growing one attribute at a time, in
a manner similar to Generic Join [47], which is a worst-case optimal
join algorithm. Crucial to their strategy is the following subprob-
lem: assuming that we have fixed the values 𝑥1, ..., 𝑥𝑖 on attributes
𝑋1, 𝑋2, ..., 𝑋𝑖 for some integer 𝑖, generate a (random) value 𝑥𝑖+1 for
the next attribute 𝑋𝑖+1 according to a carefully crafted distribution2.
The subproblem, however, is a major technical barrier, to which
Chen and Yi’s solution incurs �̃� (IN) time, which is the main rea-
son behind the gap between their complexity (1) and the desired
complexity in (2).

Rather than attribute values (the finest granularity), our approach
works on the attribute space (the coarsest granularity), which is the
cartesian product of the domains of all the attributes participating
in the join. We prove, in what we call the AGM split theorem, that
it is always possible to divide the space into a constant number of
subspaces such that

• the maximum number of join result tuples in each subspace
— characterized by the so-called “AGM bound” [8] (to be
introduced in Section 2) — is at most half of the AGM bound
of the original space, and
• the sum of the AGM bounds of the subspaces does not exceed

the AGM bound of the original space
unless the AGM bound of the original space is already small enough
to allow the join to be evaluated in �̃� (1) time. Recursively per-
forming the partitioning leads to a sampling algorithm faster (and
simpler) than the state of the art [21]. As a high-level idea, space
partitioning has been leveraged to design join algorithms before
[6, 27, 36, 42, 44]. However, the idea’s deployment in those scenar-
ios was for purposes drastically different from ours. The relevant
algorithms, as well as their analysis, in the aforementioned works
also differ from ours considerably. Our technical development is
new and, we believe, clean enough for teaching at a graduate level.

We also study how much further improvement over (2) is still pos-
sible. In fact, perhaps the most challenging step is to pose the right
question in this regard. At first glance, (2) appears obviously optimal

2More specifically, the probability of generating 𝑥𝑖+1 is decided based on how many
join result tuples would satisfy 𝑋 𝑗 = 𝑥 𝑗 for all 𝑗 ∈ [1, 𝑖 + 1].

because OUT, as mentioned, can reach Ω(IN𝜌∗), in which case (2)
becomes �̃� (1), clearly the best achievable (we are not concerned
with polylogarithmic factors in this work). Although correct, this ar-
gument tells us nothing in the realistic scenario where OUT ≪ IN𝜌∗ .
We instead ask a more meaningful question:

The join sampling question. Is there a constant 𝜖 satisfying
0 < 𝜖 < 1/2, under which we can find a structure that, after
an initial �̃� (IN + IN𝜌∗−𝜖)-time preprocessing, extracts a uni-
formly random tuple from the join result in �̃� (IN𝜌∗−𝜖/OUT)
time w.h.p. when 1 ≤ OUT ≤ IN𝜖?

Note that the structure does not need to guarantee anything for
OUT = 0 or OUT > IN𝜖 and has sampling time polynomially better
than (2) for OUT ∈ [1, IN𝜖].

We study the question within the class of combinatorial structures.
These are structures whose preprocessing and sampling algorithms
are combinatorial, namely, the algorithms do not rely on fast matrix
multiplication (à la Strassen’s). We prove that the answer to the
question is “no” subject to the hypothesis below.

Combinatorial 𝑘-clique hypothesis. There does not exist any
fixed constant 𝜖 > 0 under which a combinatorial algorithm
can achieve the following for every constant 𝑘 ≥ 3: it can
detect with probability at least 1/3 in 𝑂 (𝑛𝑘−𝜖) time whether
an undirected graph of 𝑛 vertices has a 𝑘-clique.

The background behind the above hypothesis deserves some expla-
nation. For 𝑘 being a (constant) multiple of 3, 𝑘-clique existence
in an 𝑛-vertex graph can be detected in 𝑂 (𝑛𝜔𝑘/3) time where 𝜔 is
the matrix multiplication exponent [43] (see [28] for a more com-
plex bound for arbitrary 𝑘 = 𝑂 (1)). However, if only combinatorial
algorithms are permitted, even beating the naive 𝑂 (𝑛𝑘)-time ap-
proach is difficult: the fastest combinatorial algorithm [53] takes
𝑂 (𝑛𝑘/log𝑘−1 𝑛) time for constant 𝑘 ≥ 3. It is widely conjectured
that no combinatorial algorithms can detect 𝑘-cliques in 𝑂 (𝑛𝑘−𝜖)
time for every constant 𝑘 ≥ 3; such a hypothesis has been applied
to argue for computational hardness on a great variety of problems
[1, 2, 10–13, 16, 17, 34, 35, 40, 41]. Our hypothesis (which requires
success probability 1/3) has been explicitly stated in [10, 34].

In fact, if answering the join sampling question was the sole
purpose, our argument (in Section 5) could be shortened. However,
the argument discloses an inherent connection between join sampling
and output-sensitive join computation. For a precise explanation, let
us introduce the notion of “𝜖-output sensitivity”:

Let 𝜖 be a constant with 0 < 𝜖 < 1/2. An algorithm is
𝜖-output sensitive if it can output all the tuples of the join
result in �̃� (IN + IN𝜌∗−𝜖) time w.h.p. whenever OUT ≤ IN𝜖 .

Note that the above is different from demanding an algorithm to run
in �̃� (IN𝜌∗−𝜖 + OUT) time for all OUT values because the notion
does not require the algorithm to guarantee anything when OUT >

IN𝜖 . The significance of 𝜖-output sensitive algorithms is that they
convincingly enhance worst-case join algorithms. Although there
has been research [6, 36, 44, 49] on how to compute joins in time
sensitive to OUT, none of the known algorithms is 𝜖-output sensitive
no matter how 𝜖 is chosen: those algorithms’ running time can still
degenerate into 𝑂 (IN𝜌∗) even when OUT = 0.

PODS ’23, June 18–23, 2023, Seattle, WA, USA

breaking combinatorial k-clique hypothesis

finding a combinatorial ε-output sensi-
tive algorithm for an arbitrary ε

“Yes” for the join sam-
pling question

a combinatorial join algorithm
with time Õ(INρ∗−ε + OUT)

Figure 1: Reduction relationships (arrow means “implies”)

We show that any combinatorial 𝜖-output sensitive algorithm
can be combined with our join sampling solution to detect whether
Join(Q) is empty in �̃� (IN + IN𝜌∗−𝜖) time w.h.p. regardless of the
value OUT. However, such a detection algorithm (which is combina-
torial) can determine — for all constants 𝑘 ≥ 3 — in �̃� (𝑛𝑘−2𝜖) time
w.h.p. 𝑘-clique existence in an 𝑛-vertex graph, thus breaking the
combinatorial 𝑘-clique hypothesis. We further show that any com-
binatorial structure answering “yes” to the join sampling question
with a constant 𝜖 satisfying 0 < 𝜖 < 1/2 implies a combinatorial
𝜖-output sensitive join algorithm. The above discussion yields the
relationships in Figure 1, where an arrow from problem A to problem
B means “A implies B” (i.e., B can be reduced to A).

The findings in Figure 1 have another notable implication. The
known worst-case optimal join algorithms (for result reporting) are
all combinatorial. Previously, justification on the optimality of an
𝑂 (IN𝜌∗)-time join algorithm relied heavily on OUT = Ω(IN𝜌∗). Our
result suggests that term IN𝜌∗ is necessary (up to a sub-polynomial
factor) even if OUT ≤ IN𝜖 for any constant 𝜖 > 0, subject to the
combinatorial 𝑘-clique hypothesis. For example, if a combinato-
rial algorithm could compute Join(Q) in 𝑂 (IN𝜌∗−0.001) time when
OUT ≤ IN0.001, it would make a 0.001-output sensitive algorithm
and thus break the hypothesis.

Our sampling structure also yields new algorithms on several
related problems (e.g., join size estimation, subgraph sampling, ran-
domly permuting the join result with a small delay, join union sam-
pling, etc.). We will elaborate on the details in later sections.

2 PRELIMINARIES
Section 2.1 will formally define the join sampling problem. Then,
Section 2.2 will introduce the AGM bound, which plays a crucial
role in our techniques. Finally, Section 2.3 will present a survey of
the existing join algorithms.

2.1 The Problem of Join Sampling
Denote by att a finite set whose elements are called attributes. Given
a set 𝑈 ⊆ att, we define a tuple over 𝑈 as a function 𝒖 : 𝑈 → N,
where N is the set of integers. If 𝑉 is a subset of 𝑈 , we define the
projection of 𝑢 on 𝑉 — denoted as 𝒖 [𝑉] — to be the tuple 𝒗 over 𝑉
satisfying 𝒖 (𝑋) = 𝒗 (𝑋) for every attribute 𝑋 ∈ 𝑉 . A relation is a set
𝑅 of tuples over an identical set 𝑈 of attributes. We refer to 𝑈 as the
schema of 𝑅 and represent this fact with var (𝑅) := 𝑈 .

We define a join as a set Q of relations with distinct schemas. Let
var (Q) := ⋃

𝑅∈Q var (𝑅). The result of the join, denoted as Join(Q),
is a relation with schema var (Q) given by

Join(Q) := {tuple 𝒖 over var (Q) | ∀𝑅 ∈ Q : 𝒖 [var (𝑅)] ∈ 𝑅}.

A join sample of Q is a uniformly random tuple from Join(Q).
The main problem we aim to solve is to design an index structure

for Q to support the two operations below:

• Extract a join sample of Q. It is required that repeated ex-
traction should produce mutually independent samples (i.e.,
every sample must be uniformly random even conditioned on
all the samples already taken). In the case where Join(Q) is
empty, this operation should declare so with a special output.
• Insert or delete a tuple in any relation of Q, collectively called

an “update”.

Focusing on data complexities, we assume that Q has a constant
number of relations, and the schema of every relation in Q has a
constant number of attributes. We introduce

IN :=
∑︁
𝑅∈Q
|𝑅 |, and OUT := |Join(Q)|

and refer to them as the input and output size of Q, respectively.

2.2 The AGM Bound
A fundamental question in join processing is how many tuples there
can be in the join result. The AGM bound, derived by Atserias et al.
[8], answers the question from the graph theory perspective.

To start with, given a join Q, we define a hypergraph G := (X, E)
where X := var (Q) and E := {var (𝑅) | 𝑅 ∈ Q}. In other words,
each vertex in G corresponds to an attribute involved in the join,
and each (hyper) edge in G corresponds to the schema of an input
relation of Q. We will refer to G as the schema graph of Q. For each
edge 𝑒 ∈ E, let 𝑅𝑒 be the (only) relation in Q whose schema is 𝑒.

A fractional edge covering of G is a function𝑊 : E → R, where
R is the set of real values such that

• for each 𝑒 ∈ E,𝑊 (𝑒) ≥ 0;
• for each 𝑋 ∈ X,

∑
𝑒∈E:𝑋 ∈𝑒𝑊 (𝑒) ≥ 1, i.e., the total weight of

the edges covering vertex (a.k.a., attribute) 𝑋 is at least 1.

The AGM bound shows that any fractional edge covering of G yields
an upper bound on the join result size OUT, as stated below:

LEMMA 1 (AGM BOUND [8]). Given any fractional edge cov-
ering𝑊 of G, we have |Join(Q)| ≤ AGM𝑊 (Q) where

AGM𝑊 (Q) :=
∏
𝑒∈E
|𝑅𝑒 |𝑊 (𝑒) . (3)

We will refer to AGM𝑊 (Q) as the “AGM bound of Q” when𝑊
is understood from the context.

Equation (3) expresses an upper bound of OUT using the concrete
sizes of the relations in Q. We often want to describe the upper bound
more directly using the input size IN. For this purpose, we can apply
the trivial fact |𝑅𝑒 | ≤ IN (for all 𝑒 ∈ E) to simplify Lemma 1 into
OUT ≤ IN

∑
𝑒∈E𝑊 (𝑒) . Note that the exponent

∑
𝑒∈E𝑊 (𝑒) is exactly

the total weight of all the edges in E assigned by𝑊 . This motivates
the concept of fractional edge covering number of G — denoted
as 𝜌∗ — which is the smallest

∑
𝑒∈E𝑊 (𝑒) among all the fractional

edge coverings𝑊 . Hence, it always holds that OUT ≤ IN𝜌∗ .
The AGM bound is tight: given any integer IN ≥ 1 and hypergraph

G, we can always find a join Q, which has input size IN and schema
graph G, such that the output size of Q reaches Ω(IN𝜌∗) [8].

PODS ’23, June 18–23, 2023, Seattle, WA, USA Shiyuan Deng, Shangqi Lu, and Yufei Tao

2.3 Algorithms on Join Processing
Full Join Computation. The tightness of the AGM bound estab-
lishes Ω(IN𝜌∗) as a lower bound for the running time of any join
algorithm because this amount of time is needed even just to output
Join(Q) in the worst case. Ngo et al. [45] were the first to dis-
cover a worst-case optimal algorithm that can evaluate any join in
𝑂 (IN𝜌∗) time. Since their invention, quite a number of algorithms
with time complexity �̃� (IN𝜌∗) have been subsequently developed
[6, 36, 42, 44, 46, 47, 54].

In practice, a join’s output size OUT may be far less than IN𝜌∗ .
This motivates the study of output-sensitive algorithms whose run-
ning time is sensitive to both IN and OUT. As a notable success,
Yannakakis [56] presented an algorithm to process any “acyclic join”
in �̃� (IN + OUT) time. However, acyclic joins are a special type of
joins on which stringent restrictions are imposed. Evaluating a join
in �̃� (IN𝜌∗−𝜖 + OUT) time in the absence of those restrictions, even
for an arbitrarily small constant 𝜖 > 0, is still open.

Several non-trivial attempts have been made to tackle the open
challenge. When executed on a general join, all the known output-
sensitive algorithms [6, 36, 44, 49] have running time of the form

�̃� (Cerwidth + OUT)

where width quantifies how much the schema graph G deviates
from a tree (it can be defined using, e.g., tree width [24], query width
[19], fractional hypertree width [31], etc.), and Cer is a value, called
the “certificate size”, measuring how difficult the input relations
are for join processing in the instance-oriented sense (e.g., IN is a
common value for Cer; see [36, 44] for other Cer definitions based
on specialized “certificates”). Unfortunately, for all the algorithms in
[6, 36, 44, 49], the term Cerwidth always ends up being Ω(IN𝜌∗)
at some “unfriendly” joins. Therefore, as far as general joins are
concerned, no algorithms with �̃� (IN𝜌∗−𝜖 + OUT) time have been
found, no matter how small the constant 𝜖 is.

All the above algorithms are combinatorial. We are not aware of
any non-combinatorial approaches for computing Join(Q). There
exist, however, algorithms [7, 25, 26] that use matrix multiplication
to evaluate conjunctive queries with projections. A join in our defini-
tion can be understood as a conjunctive query without projections,
in which case the algorithms of [7, 25, 26] do not promise faster
running time than the combinatorial methods discussed earlier.

Join Sampling. In 1999, Chaudhuri et al. [18] initialized the study
on join sampling. They focused on joins with two relations, i.e.,
Q = {𝑅1, 𝑅2}, and described a structure of 𝑂 (IN) space that allows
extracting a sample from Join(Q) in constant time. They also proved
a lower bound that, if no preprocessing is allowed, taking a sample
demands Ω(IN) time. Acharya et al. [3] considered joins with more
than two relations, but their formal results apply only when the
relations of Q obey the so-called “star schema”, namely, there is
a “center relation” that has a foreign key to every other relation.
Sampling is trivial on star-schema joins because it boils down to
drawing a random tuple from a single relation (i.e., the center one).

No theoretical progress had been documented on join sampling
in the next 18 years following the work of [3, 18] (in the mean-
time, the problem had received a huge amount of attention from
the system community, as discussed later). Theory advancement re-
sumed in 2018. For any acyclic join Q, Zhao et al. [58] presented an

𝑂 (IN)-space structure that permits drawing a sample from Join(Q)
in constant time. By combining their structure with hypertree decom-
positions3, one can obtain a structure for an arbitrary join Q that has
𝑂 (IN) space and �̃� (INfhtw) sampling time, where fhtw is the frac-
tional hypertree width of Q; in the worst case, however, fhtw = 𝜌∗,
causing the sampling time to degenerate into �̃� (IN𝜌∗). In 2020, Chen
and Yi [21] identified a class of joins under the name sequenceable
joins, for which they obtained a (static) structure of 𝑂 (IN) space
that can sample from the join result in �̃� (IN𝜌∗/max{1,OUT}) time
w.h.p.4. For general (non-sequenceable) joins, their structure still
works, but the sampling time deteriorates by a factor of 𝑂 (IN) to
�̃� (IN𝜌∗+1/max{1,OUT}).

Closely relevant to join sampling is the direct access (DA) prob-
lem on join computation. In that problem, there is a pre-agreed order-
ing on the tuples of Join(Q) such that, given an integer 𝑘 ∈ [1,OUT],
a DA query returns the 𝑘-th tuple in Join(Q). If a structure can an-
swer a DA query in𝑇DA time, we can use the query to draw a sample
from Join(Q) in 𝑂 (𝑇DA) time with a random value 𝑘 ∈ [1,OUT],
where the value OUT is available from preprocessing. When Q is
“free-connex”, there is a structure of �̃� (IN) space answering a DA
query in �̃� (1) time [14, 15], which means that the structure also
guarantees �̃� (1) sample time. However, because a free-connex Q is
necessarily acyclic, the sampling result is subsumed by that of [58].

Finally, we note that join sampling has been studied extensively
in system research (see [5, 20, 33, 38, 39, 48, 51, 55, 57, 59] and
the references therein), which has produced numerous empirically
efficient solutions. In the worst case, however, those solutions all
require Ω(IN𝜌∗) time to draw one sample, regardless of the value of
OUT. All the above join sampling solutions, theoretical or empirical,
are combinatorial.

3 THE AGM SPLIT THEOREM
This section will establish the AGM split theorem, which serves as
the technical core of our sampling algorithm. The theorem provides
a simple and intuitive way to split the “attribute space”, with the
guarantee that the upper bound on the join result size given by the
AGM bound gets (at least) halved in each subspace after the split.

Recall that var (Q) is the set of attributes involved in the join. Set
𝑑 := |var (Q)|. Let us impose an arbitrary ordering on the attributes
of var (Q), which can then be denoted as 𝑋1, 𝑋2, ..., 𝑋𝑑 . This way,
every tuple 𝒖 in the join result Join(Q) can be interpreted as a point
in N𝑑 , where 𝒖 (𝑋𝑖) is the point’s 𝑖-th coordinate for each 𝑖 ∈ [1, 𝑑].
The attribute space is now formally defined to be N𝑑 .

Next, we introduce box-induced sub-join, a notion imperative in
our subsequent discussion. Let 𝐵 be a box in the attribute space,
namely, 𝐵 has the form [𝑥1, 𝑦1] × [𝑥2, 𝑦2] × ... × [𝑥𝑑 , 𝑦𝑑]. For each
𝑖 ∈ [1, 𝑑], we use 𝐵(𝑋𝑖) to denote [𝑥𝑖 , 𝑦𝑖], i.e., the projection of 𝐵 on
the 𝑖-th attribute. On every relation 𝑅 ∈ Q, the box 𝐵 induces a “sub-
relation” 𝑅(𝐵), which includes all the tuples of 𝑅 “falling” into 𝐵.
Care must be taken here because 𝑅 may not include all the attributes
in var (Q). We say that a tuple 𝒖 ∈ 𝑅 falls in 𝐵 if 𝐵(𝑋) covers 𝒖 (𝑋)
3See Appendix A of [36] for an introduction to such decompositions.
4In [21], Chen and Yi claimed the sampling time as 𝑂 (IN𝜌∗/max{1,OUT}) in ex-
pectation, but under the assumption that an expression of the form 𝑥𝑦 (for a fractional
𝑦) can be evaluated in constant time. Removing the assumption incurs an 𝑂 (log IN)
multiplicative factor. Moreover, it is standard to make their time complexity hold w.h.p.
by paying yet another 𝑂 (log IN) multiplicative factor.

PODS ’23, June 18–23, 2023, Seattle, WA, USA

for every attribute 𝑋 ∈ var (𝑅). 𝑅(𝐵) can then be formalized as

𝑅(𝐵) := {𝒖 ∈ 𝑅 | 𝒖 falls in 𝐵}. (4)

By putting together the 𝑅(𝐵) of all 𝑅 ∈ Q, we have the “sub-join
induced by 𝐵”, formally defined as

Q(𝐵) := {𝑅(𝐵) | 𝑅 ∈ Q}. (5)

Given a sub-join Q(𝐵) and an attribute 𝑋 ∈ var (Q), we will need
to be concerned with the set of 𝑋 -values appearing in at least one
relation of Q(𝐵). This can be formalized as

actdom(𝑋, 𝐵) := {𝑥 ∈ N | ∃𝑅(𝐵) ∈ Q(𝐵), 𝒖 ∈ 𝑅(𝐵) :
𝑋 ∈ var (𝑅), 𝒖 (𝑋) = 𝑥} (6)

which will be referred to as the “active 𝑋 -domain induced by 𝐵”.
We will reason about the AGM bounds on box-induced sub-joins

under a fixed fractional edge covering 𝑊 . For that purpose, we
“overload” the function AGM𝑊 , defined in (3), in a manner that will
prove handy in our analysis. Let G := (X, E) be the schema graph
of Q (defined in Section 2.2) and𝑊 be an arbitrary fractional edge
covering of G. Given a box 𝐵, we define

AGM𝑊 (𝐵) := AGM𝑊 (Q(𝐵)) =
∏
𝑒∈E
|𝑅𝑒 (𝐵) |𝑊 (𝑒) . (7)

With a slight abuse of notation, the “overloading” allows AGM𝑊 to
take a box as the parameter directly. No ambiguity can arise because,
as we have seen, every box 𝐵 defines a sub-join Q(𝐵). By Lemma 1,
AGM𝑊 (𝐵) is an upper bound of the result size of Q(𝐵). It is worth
mentioning that AGM𝑊 (N𝑑) — the parameter is set to the attribute
space (the largest box) — equals AGM(Q), the AGM bound of the
original join Q. We will refer to AGM𝑊 (𝐵) as the “AGM bound of
𝐵”, when𝑊 is clear from the context.

Before unveiling the AGM split theorem, we need to clarify some
“oracles” that provide efficient implementations of certain primitive
operations. Specifically, two oracles will be useful:
• Count oracle: Given a relation 𝑅 ∈ Q and a box 𝐵, the oracle

returns the number of tuples of 𝑅(𝐵) in �̃� (1) time, where
𝑅(𝐵) is defined in (4).
• Median oracle: Given an attribute 𝑋 ∈ var (Q) and a box 𝐵,

the oracle returns the median value5 of actdom(𝑋, 𝐵) in �̃� (1)
time, where actdom(𝑋, 𝐵) is defined in (6).

Both oracles can be implemented with rudimentary data structures,
as will be discussed in later sections. Here, we will proceed by
assuming that they have been made available at our disposal.

THEOREM 2 (AGM SPLIT THEOREM). Fix an arbitrary frac-
tional edge covering 𝑊 of G, and assume the availability of
count and median oracles. Given any box 𝐵 with AGM𝑊 (𝐵) ≥ 2,
we can find in �̃� (1) time a set C of at most 2𝑑 + 1 (where
𝑑 := |var (Q)|) boxes such that

(1) the boxes in C are disjoint and have 𝐵 as their union;
(2) for each box 𝐵′ ∈ C, AGM𝑊 (𝐵′) ≤ 1

2AGM𝑊 (𝐵);
(3)

∑
𝐵′∈C AGM𝑊 (𝐵′) ≤ AGM𝑊 (𝐵).

The rest of the section serves as a proof of the theorem, which
consists of two main parts. First, we will present a technical lemma

5If a set 𝑆 has 𝑛 values, the median of 𝑆 is the ⌈𝑛/2⌉-th smallest value in 𝑆 .

to reveal an underlying mathematical relationship in AGM bounds
that concerns splitting a box along one of the attributes. Then, we
will utilize the lemma to design an efficient algorithm to produce the
desired set C of boxes.

Let us start with the technical lemma. To facilitate explanation, it
will be helpful to introduce a function replace(𝐵, 𝑖, 𝐼), where 𝐵 is
a box in the attribute space, 𝑖 is an integer between 1 and 𝑑 , and 𝐼 is
an interval of integers. The function yields the box

replace(𝐵, 𝑖, 𝐼) := 𝐵(𝑋1) × ... × 𝐵(𝑋𝑖−1) × 𝐼 × 𝐵(𝑋𝑖+1) × ... × 𝐵(𝑋𝑑)
that is, replacing the projection of 𝐵 on attribute 𝑋𝑖 with 𝐼 , while
retaining the projections on the other attributes.

To state our lemma, let us fix a fractional edge covering𝑊 of G
and a box 𝐵, as we do in Theorem 2. In addition, fix an arbitrary
attribute 𝑋𝑖 , for some 𝑖 ∈ [1, 𝑑]. Suppose that we partition the
(integer) interval 𝐵(𝑋𝑖) arbitrarily into 𝑠 disjoint integer intervals
𝐼1, 𝐼2, ..., 𝐼𝑠 where 𝑠 can be any value at least 2 (𝑠 does not need to be
a constant). For each 𝑗 ∈ [1, 𝑠], the interval 𝐼 𝑗 defines a box

𝐵 𝑗 := replace(𝐵, 𝑖, 𝐼 𝑗) . (8)

It is clear that 𝐵1, 𝐵2, ..., 𝐵𝑠 are mutually disjoint and have 𝐵 as their
union. Our technical lemma can now be presented as:

LEMMA 3.
∑𝑠

𝑗=1 AGM𝑊 (𝐵 𝑗) ≤ AGM𝑊 (𝐵).

The above lemma is, in fact, Lemma 6 of [27] in disguise. Unfor-
tunately, Lemma 6 of [27] was presented in a sophisticated context,
because of which the reader would find it difficult to recognize
the two lemmas’ resemblance. We present a standalone proof in
Appendix A for the sake of self-containment.

Equipped with the lemma, next we explain how to obtain the set
C of boxes in Theorem 2 using �̃� (1) time. The following simple
proposition will be useful throughout the paper.

PROPOSITION 1. Given any box 𝐵, we can compute AGM𝑊 (𝐵)
in �̃� (1) time.

PROOF. We first use the count oracle to obtain |𝑅𝑒 (𝐵) | in �̃� (1)
time for each edge 𝑒 ∈ E (remember that E is the set of edges in
the schema graph G), and then feed these values into (7) to compute
AGM𝑊 (𝐵).6 The proposition holds because E has a constant number
of edges. □

Figure 2 presents our algorithm for splitting a box 𝐵 into a set
C of smaller boxes meeting the requirements of Theorem 2. The
algorithm, split(𝑖, 𝐵), admits two parameters: an integer 𝑖 ∈ [1, 𝑑]
and a box 𝐵 = [𝑥1, 𝑦1] × ... × [𝑥𝑑 , 𝑦𝑑]. The box should satisfy the
constraint that its projections on the first 𝑖 − 1 attributes must be
singleton intervals (a singleton interval [𝑥,𝑦] contains only one

6Computing a quantity like |𝑅𝑒 (𝐵) |𝑊 (𝑒) requires a power operator — one that evalu-
ates an expression like 𝑥𝑦 for a fractional 𝑦 — which is commonly assumed to take
constant time in the join literature; e.g., see previous work [21, 27]. Strictly speaking the
standard RAM model does not provide such an operator. One simple way to circumvent
the issue is to use the observation that𝑊 (𝑒) has only | E | = 𝑂 (1) different choices,
i.e., one for each 𝑒 ∈ | E |, and |𝑅𝑒 (𝐵) | must be an integer from 0 to IN. Therefore,
we can prepare, for each 𝑒 ∈ E, the values 1𝑊 (𝑒) , 2𝑊 (𝑒) , ..., IN𝑊 (𝑒) in preprocessing
and store them all in 𝑂 (IN) extra space. As a less straightforward, but more powerful,
remedy, we can calculate |𝑅𝑒 (𝐵) |𝑊 (𝑒) up to an additive error of 1/IN𝑐 for some
sufficiently large constant 𝑐, which is easy to achieve in �̃� (1) time. Such a precision
level is sufficient for our algorithms in this paper to work. Henceforth, we will no longer
dwell on the issue but will simply assume that the power operator takes �̃� (1) time. The
reader may also refer to Section 6 of [32] for a relevant discussion.

PODS ’23, June 18–23, 2023, Seattle, WA, USA Shiyuan Deng, Shangqi Lu, and Yufei Tao

algorithm split(𝑖, 𝐵)
/* assume 𝐵 = [𝑥1, 𝑦1] × ... × [𝑥𝑑 , 𝑦𝑑]; it is required
that 𝑥1 = 𝑦1, 𝑥2 = 𝑦2, ..., and 𝑥𝑖−1 = 𝑦𝑖−1 */

1. C ← ∅
2. 𝑧 ← the largest value in [𝑥𝑖 , 𝑦𝑖] s.t. AGM𝑊 (𝐵left) ≤ 1

2AGM𝑊 (𝐵)
where 𝐵left ← replace(𝐵, 𝑖, [𝑥𝑖 , 𝑧 − 1])

3. if 𝑧 − 1 ≥ 𝑥𝑖 then C ← C ∪ {𝐵left }
4. 𝐵mid ← replace(𝐵, 𝑖, [𝑧, 𝑧])
5. if 𝑖 = 𝑑 then add 𝐵mid to C
6. else C ← C∪ split(𝑖 + 1, 𝐵mid)
7. if 𝑧 + 1 ≤ 𝑦𝑖 then C ← C ∪ {𝐵right } where

𝐵right ← replace(𝐵, 𝑖, [𝑧 + 1, 𝑦𝑖])
8. return C

Figure 2: The split algorithm for Theorem 2

value, i.e., 𝑥 = 𝑦). Note that the constraint does not prevent us from
supplying an arbitrary box as 𝐵, as long as we set 𝑖 = 1 in that case.
The integer 𝑖 stands for the “split attribute”. Specifically, given any
value 𝑧 ∈ [𝑥𝑖 , 𝑦𝑖], we can split 𝐵 into (at most) three boxes:

𝐵left := replace(𝐵, 𝑖, [𝑥𝑖 , 𝑧 − 1])
𝐵mid := replace(𝐵, 𝑖, [𝑧, 𝑧])
𝐵right := replace(𝐵, 𝑖, [𝑧 + 1, 𝑦𝑖]).

As a special case, 𝐵left or 𝐵right does not exist if 𝑧 = 𝑥𝑖 or 𝑦𝑖 ,
respectively. We want to find the largest 𝑧 satisfying the condition
AGM𝑊 (𝐵left) ≤ 1

2AGM𝑊 (𝐵) (Line 2); 𝑧 definitely exists because
the condition is fulfilled by 𝑧 = 𝑥𝑖 (in which case 𝐵left is empty
and the condition is vacuously met). The boxes 𝐵left and 𝐵right , if
they exist, are added directly to C (Line 3 and 7). Regarding 𝐵mid ,
notice that it now has singleton projections on the first 𝑖 attributes. If
𝑖 = 𝑑, then 𝐵mid has degenerated into a point in the attribute space
and is also added to C (Line 5). Otherwise, we recursively invoke
split(𝑖 + 1, 𝐵mid) to split 𝐵mid into a set C′ of boxes and union
C′ into C (Line 6).

Next, we show that the set C produced by split(1, 𝐵) has the
three properties in Theorem 2. Property 1 is obvious and omitted.
Let us turn to Property 2. For every 𝐵left created by a recursive
call split(𝑖, 𝐵′), where 𝐵′ is some box inside 𝐵 generated in the
recursion, we have AGM𝑊 (𝐵left) ≤ 1

2AGM𝑊 (𝐵′) ≤ 1
2AGM𝑊 (𝐵).

Hence, every 𝐵left added to C must satisfy Property 2.
Let us switch attention to the 𝐵right in an (arbitrary) recursive call

split(𝑖, 𝐵′). By definition of the value 𝑧 at Line 2, it must hold that
AGM𝑊 (𝐵left ∪𝐵mid) ≥ 1

2AGM𝑊 (𝐵′). Lemma 3, on the other hand,
tells us that AGM𝑊 (𝐵left ∪ 𝐵mid) + AGM𝑊 (𝐵right) ≤ AGM𝑊 (𝐵′)
(apply the lemma with 𝑠 = 2, 𝐵1 = 𝐵left ∪ 𝐵mid , and 𝐵2 = 𝐵right).
This gives AGM𝑊 (𝐵right) ≤ 1

2AGM𝑊 (𝐵′) ≤ 1
2AGM𝑊 (𝐵). Hence,

every 𝐵right added to C also satisfies Property 2.
It remains to discuss 𝐵mid . In all the recursive calls to split,

the only 𝐵mid added to C is the final one that has degenerated into a
point (Line 5). For such a 𝐵mid , we have AGM𝑊 (𝐵mid) ≤ 1, which
is at most 1

2AGM𝑊 (𝐵) because AGM𝑊 (𝐵) ≥ 2.
Lastly, Property 3 is a corollary of Lemma 3. At any recursive call

split(𝑖, 𝐵′), the lemma indicates AGM𝑊 (𝐵left) +AGM𝑊 (𝐵mid) +
AGM𝑊 (𝐵right) ≤ AGM𝑊 (𝐵′). Now, Property 3 follows from a

simple inductive argument on 𝑖 (for breaking AGM𝑊 (𝐵mid) into the
sum of the AGM bounds of smaller boxes).

The set C returned by split(1, 𝐵) has a size no more than 2𝑑 +1
because we add at most two boxes to C for each 𝑖 ∈ [1, 𝑑 − 1] and at
most three for 𝑖 = 𝑑. Each call to split, excluding the recursive
invocation at Line 6, runs in �̃� (1) time. In particular, Line 2 can be
implemented in �̃� (1) time due to Proposition 1 and the fact that 𝑧
can be found with binary search in the active 𝑋𝑖 -domain induced
by 𝐵, which necessitates only 𝑂 (log IN) calls to the median oracle.
As the overall recursion depth is 𝑑 = 𝑂 (1), the total running time of
split(1, 𝐵) is �̃� (1). This completes the proof of Theorem 2.

Remark. In Proposition 8 of [27], Deep and Koutris presented a
splitting result in the so-called “lexicographical order”. Under the
lexicographical order, each tuple 𝒖 in the attribute space is viewed
as a string of 𝑑 characters 𝒖 (𝑋1)𝒖 (𝑋2) ...𝒖 (𝑋𝑑), and two tuples are
compared by their string representations alphabetically. An interval
[𝒖1, 𝒖2] under the order includes all the tuples 𝒗 alphabetically be-
tween 𝒖1 and 𝒖2. The goal in [27] is to divide [𝒖1, 𝒖2] into (i) two
intervals whose “AGM bounds” (see [27] for what this means) are at
most half of that of [𝒖1, 𝒖2] and (ii) a tuple. Their split algorithm,
which differs from ours in Figure 2, also uses “boxes” somehow,
but the “boxes” there are specially constrained, as opposed to being
arbitrary boxes. Although related, the statements in our Theorem 2
and Proposition 8 of [27] present distinct findings, neither of which
subsumes the other.

4 JOIN SAMPLING
We are ready to solve the join sampling problem. To that end, Sec-
tion 4.1 first introduces “the join box-tree”, a conceptual hierarchy
that paves the foundation of the proposed sampling algorithm, which
is presented in Section 4.2. Our discussion in Sections 4.1 and 4.2
will assume the count and median oracles (defined in Section 3),
whose implementation will be explained in Section 4.3.

4.1 The Join Box-Tree
Our AGM split theorem shows how to split an arbitrary box in
the attribute space. Next, we will repeatedly utilize the theorem to
partition the space into sufficiently small boxes with “trivial AGM
bounds”. This will produce a tree T that we name the join box-tree.

Fix an arbitrary fractional edge covering𝑊 of the schema graph
G := (X, E) of the input join Q. Define 𝜌 :=

∑
𝑒∈E𝑊 (𝑒), i.e., the

total weight of the edges in E under𝑊 . The value 𝜌 is a constant
that does not depend on IN.

The join box-tree T is a tree dependent on𝑊 . An internal node
in T has at most 2𝑑 + 1 child nodes, where 𝑑 := |var (Q)|. Every
node, no matter leaf or internal, is associated with a box, and no two
nodes are associated with the same box. For this reason, henceforth,
if a node is associated with a box 𝐵, we will use 𝐵 to denote that
node as well. Given a node 𝐵, we refer to AGM𝑊 (𝐵), defined in (7),
as the node’s AGM bound. Every internal node has an AGM bound
at least 2, whereas every leaf node has an AGM bound less than 2.

Next, we formally define T in a top-down manner. The root
of T is associated with the box N𝑑 , i.e., the entire attribute space.
Consider, in general, a node associated with box 𝐵. If node 𝐵 has an
AGM bound less than 2, we make it a leaf of T . Otherwise, 𝐵 is an
internal node with child nodes created in two steps.

PODS ’23, June 18–23, 2023, Seattle, WA, USA

(1) Apply Theorem 2 to split 𝐵 into a set C of boxes.
(2) For each box 𝐵′ ∈ C, create a child node, associated with box

𝐵′, of node 𝐵. The number of child nodes of 𝐵 is |C|.
We now proceed to explore the properties of the join box-tree,

starting with:

PROPOSITION 2. T has height 𝑂 (log IN).

PROOF. Every time we descend from a parent node to a child,
the AGM bound decreases by at least a factor of two (Property 2
of Theorem 2). The root 𝐵 of T has an AGM bound that equals the
AGM bound of Q (given by Lemma 1), which is no more than IN𝜌 ,
where 𝜌 =

∑
𝑒∈E𝑊 (𝑒) as mentioned earlier. As a node becomes a

leaf as soon as its AGM bound drops below 2, we can descend only
𝑂 (log IN𝜌) = 𝑂 (log IN) levels. □

The following property focuses on the leaf nodes of T .

PROPOSITION 3. The boxes of all the leaves of T are disjoint
and have the attribute space N𝑑 as the union.

PROOF. The root of T has the entire attribute space as its associ-
ated box. In general, the box of a parent node is partitioned by the
boxes of the child nodes, and the boxes of the child nodes are always
disjoint (Property 1 of Theorem 2). This proves the proposition. □

The lemma below echoes our statement in Section 1 that a box
with a “small-enough” AGM bound corresponds to a join that can
be evaluated in near-constant time.

LEMMA 4. Consider an arbitrary leaf of T . Let 𝐵 be the box
associated with the leaf. The result of the join Q(𝐵), which contains
at most one tuple, can be computed in �̃� (1) time, assuming the count
and median oracles.

PROOF. First, compute AGM𝑊 (𝐵) in �̃� (1) time (Proposition 1).
If AGM𝑊 (𝐵) = 0, we declare the join result Join(Q(𝐵)) empty.
Otherwise, AGM𝑊 (𝐵) is at least 1 (because Equation (7), if not
equal to 0, must be at least 1) but less than 2 (because 𝐵 is a leaf). It
follows immediately that Join(Q(𝐵)) can have at most one tuple.

We can utilize algorithm split in Figure 2 to compute the result
of Q(𝐵). For this purpose, run split(1, 𝐵) and collect the set C
of boxes returned. We claim that every box 𝐵′ ∈ C must satisfy
AGM𝑊 (𝐵′) = 0, except possibly only one box 𝐵′′; furthermore, if
𝐵′′ exists, it must have degenerated into a point! We thus report
the point if it is a join result tuple (this is equivalent to checking if
AGM𝑊 (𝐵′′) = 1). The overall running time is �̃� (1).

It remains to prove our claim. Recall that whenever split adds
𝐵left to C, it ensures AGM𝑊 (𝐵left) ≤ 1

2AGM𝑊 (𝐵), which is less
than 1. This means AGM𝑊 (𝐵left) = 0 (as mentioned, Equation (7)
is either 0 or at least 1). The same applies to every 𝐵right added to
C. Hence, if the aforementioned box 𝐵′′ indeed exists, it must have
been added to C as 𝐵mid . However, during all the recursive calls to
split, only one 𝐵mid is added to C (at Line 5 of Figure 2), and
this 𝐵mid must have degenerated into a point. This explains why 𝐵′′

is unique and must be a point. □

algorithm sample(𝑊)
/*𝑊 is a fractional edge covering of Q */

1. 𝐵 ← N𝑑 /* the attribute space */
2. while AGM𝑊 (𝐵) ≥ 2 do
3. apply Theorem 2 to split 𝐵 into a set C of boxes
4. take a random box 𝐵child from C such that

Pr[𝐵child = 𝐵′] = AGM𝑊 (𝐵′)
AGM𝑊 (𝐵) for each 𝐵′ ∈ C, and

Pr[𝐵child = nil] = 1 −∑
𝐵′∈C AGM𝑊 (𝐵′)/AGM𝑊 (𝐵)

5. if 𝐵child = nil then return “failure”
6. 𝐵 ← 𝐵child
7. apply Lemma 4 to compute Join(Q(𝐵))
8. if Join(Q(𝐵)) = ∅ then return “failure”
9. toss a coin with heads probability 1/AGM𝑊 (𝐵)
10. if the coin comes up heads then

return the (only) tuple in Join(Q(𝐵))
11. return “failure”

Figure 3: The proposed sampling algorithm

4.2 The Sampling Algorithm
We emphasize that the join box-tree T is conceptual: its size is
too large7 such that we cannot afford to materialize it. To extract
a sample from the join result Join(Q), our algorithm will gen-
erate — on the fly — a single root-to-leaf path of T in �̃� (1)
time and then wipe off the path from memory immediately. The
path generation may not always produce a sample, but it does so
with probability OUT/AGM𝑊 (Q), where OUT = |Join(Q)|. Thus,
AGM𝑊 (Q)/OUT repeats will get us a sample in expectation.

Figure 3 presents the details of our sampling algorithm. We start
from the root of T . In general, suppose that we are currently stand-
ing at a node with box 𝐵. Let us first consider 𝐵 to be an internal
node. We obtain the set C of its child nodes using the AGM split
theorem in �̃� (1) time, and then descend into a child 𝐵child randomly
selected from C with weighted sampling. Specifically, each 𝐵′ ∈ C is
chosen with probability AGM𝑊 (𝐵′)/AGM𝑊 (𝐵). By Property 3 of
Theorem 2, we have

∑
𝐵′∈C AGM𝑊 (𝐵′) ≤ AGM𝑊 (𝐵). Thus, with

probability 1−∑
𝐵′∈C AGM𝑊 (𝐵′)/AGM𝑊 (𝐵), no child is selected,

in which case we declare “failure” and the algorithm terminates.
Because C has size at most 2𝑑 + 1 = 𝑂 (1), the weighted sampling
takes �̃� (1) time, which is the cost to compute the AGM bounds of
all the boxes in C (Proposition 1).

Next, let us look at the scenario where 𝐵 is a leaf. We use
Lemma 4 to compute the result of the sub-join Q(𝐵) in �̃� (1) time. If
Join(Q(𝐵)) = ∅, the algorithm terminates with “failure”. Otherwise,
Join(Q(𝐵)) has only a single tuple 𝒖 (Lemma 4). We return 𝒖 (as the
join sample of the original join Q) with probability 1/AGM𝑊 (𝐵),
but still declare “failure” with probability 1 − 1/AGM𝑊 (𝐵).

It is clear that sample runs in �̃� (1) time (remember that T has
height �̃� (1); see Proposition 2). Next, we prove that if it returns a
tuple, then the tuple must have been taken from Join(Q) uniformly
at random. Proposition 3 guarantees that every tuple 𝒖 ∈ Join(Q),
which can be regarded as a point in the attribute space, is covered by
the box 𝐵 of exactly one leaf in T . Consider any 𝒖 ∈ Join(Q) and
its covering leaf 𝐵. Let Π be the path from the root of T to the node

7The number of nodes in T is at least |Join(Q) |.

PODS ’23, June 18–23, 2023, Seattle, WA, USA Shiyuan Deng, Shangqi Lu, and Yufei Tao

𝐵. Algorithm sample outputs 𝒖 with probability(∏
non-root 𝐵′∈Π

AGM𝑊 (𝐵′)
AGM𝑊 (parent (𝐵′))

)
· 1
AGM𝑊 (𝐵)

(9)

where parent (𝐵′) represents the parent of node 𝐵′. It is easy to
see that (9) evaluates to 1/AGM𝑊 (N𝑑), where AGM𝑊 (N𝑑) is the
AGM bound of the root of T and equals AGM𝑊 (Q). In other words,
𝒖 is sampled with probability 1/AGM𝑊 (Q). As the probability is
identical for all 𝒖 ∈ Join(Q), our algorithm returns a uniformly
random tuple in Join(Q), provided that it does not declare failure.

We can now calculate the probability that algorithm “succeeds”
(i.e., returning a tuple) as∑︁

𝒖∈Join(Q)
Pr[𝒖 is returned] =

OUT
AGM𝑊 (Q)

.

A standard application of Chernoff bounds shows that we can get
a sample w.h.p. by repeating the algorithm �̃� (AGM𝑊 (Q)/OUT)
times with a total cost of �̃� (AGM𝑊 (Q)/OUT).

A special case occurs when OUT = 0, which would force us into
infinite repeats. The issue can be easily dealt with by stopping after
�̃� (AGM𝑊 (Q)) repeats and reverting to a worst-case optimal join
algorithm (e.g., Generic Join [47]) to evaluate Q in full (which will
confirm OUT = 0). The overall cost is �̃� (AGM𝑊 (Q)).

4.3 Oracles
It is time to clarify the oracles. In fact, the count and median ora-
cles only require solving problems that are nowadays considered
rudimentary in the data-structure area of computer science. We can,
for example, maintain a set of range trees [9, 23] to implement the
count oracle and a set of binary search trees to implement the median
oracle. All these trees occupy �̃� (IN) space, can be built in �̃� (IN)
time, and can be modified in �̃� (1) time along with each update in
the relations of Q. Further details are available in Appendix B. We
thus have established the following theorem.

THEOREM 5. Consider an arbitrary (natural) join Q involv-
ing a constant number of attributes. Let 𝑊 be an arbitrary
fractional edge covering of the schema graph of Q. There is
an index structure of �̃� (IN) space that can be used to extract,
with high probability, a sample from the join result of Q in
�̃� (AGM𝑊 (Q)/max{1,OUT}) time, and supports an update in
the relations of Q in �̃� (1) time, where IN and OUT, respectively,
are the input and output sizes of Q, and AGM𝑊 (Q) is the AGM
bound of Q under𝑊 given by Lemma 1. The structure’s update
and sampling algorithms are combinatorial.

By choosing an optimal fractional edge covering𝑊 , the sample
time in the theorem is bounded by the complexity in (2).

5 HARDNESS OF JOIN SAMPLING AND
OUTPUT-SENSITIVE JOIN ALGORITHMS

This section will provide evidence that Theorem 5 can no longer be
improved significantly for all joins. For this purpose, we will argue
that no combinatorial structure can give a “yes” answer to the join
sampling question unless the combinatorial 𝑘-clique hypothesis is

wrong. To do so, we will take a de-tour to bridge join sampling with
output-sensitive join evaluation.

Let A be a combinatorial algorithm for computing Join(Q). Re-
call from Section 1 thatA is 𝜖-output sensitive — where 0 < 𝜖 < 1/2
— if it runs in time �̃� (IN𝜌∗−𝜖) as long as OUT ≤ IN𝜖 . The lemma
below is proved in Appendix C.

LEMMA 6. If a combinatorial structure can answer “yes” to
the join sampling question for a constant 𝜖 ∈ (0, 1/2), there is a
combinatorial 𝜖-output sensitive algorithm for join computation.

An 𝜖-output sensitive algorithm A does not need to be fast when
OUT > IN𝜖 . However, when OUT > IN𝜖 , the sampling algorithm in

Theorem 5 runs in �̃� (IN𝜌∗

OUT) = �̃� (IN𝜌∗−𝜖) time. In Appendix D, we
combine the two algorithms to prove:

LEMMA 7. Given a combinatorial 𝜖-output sensitive algorithm,
we can design a combinatorial algorithm to detect whether Join(Q)
is empty in �̃� (IN + IN𝜌∗−𝜖) time w.h.p., regardless of the value OUT.

As shown in Appendix F, however, the emptiness-detection al-
gorithm in Lemma 7 breaks the combinatorial 𝑘-clique hypothesis.
In summary, finding a combinatorial 𝜖-output sensitive algorithm
is at least as hard as breaking the hypothesis. Lemma 6 indicates
that it can be only harder to improve our result in Theorem 5 by a
polynomial factor even when OUT ≪ IN𝜌∗ .

6 APPLICATIONS
Our join sampling structure can be utilized to tackle many problems,
a partial list of which is presented below.
• (Join size estimation) It is standard [21] to use join sam-

pling to estimate |Join(Q)| up to a relative error 𝜆. Our struc-
ture in Theorem 5 can be applied to produce an estimate in

�̃� (1
𝜆2

IN𝜌∗

max{1,OUT}) time w.h.p., improving the state of the art
in [21] by an 𝑂 (IN) factor. We can also support each update
in �̃� (1) time.
• (Subgraph sampling) Let 𝐺 := (𝑉 , 𝐸) be a simple undirected

graph. Given a pattern graph 𝑄 of a constant size, a query
samples an occurrence8 of 𝑄 in 𝐺 uniformly at random. We
obtain a structure of �̃� (|𝐸 |) space that answers a query in
�̃� (|𝐸 |𝜌∗/max{1,OCC}) time w.h.p., where 𝜌∗ is the frac-
tional edge covering number of 𝑄 and OCC is the number
of occurrences of 𝑄 in 𝐺 . The structure supports an edge
insertion and deletion in �̃� (1) time. Previously, a structure
matching our guarantees was given in [29]. Our solution is
drastically different and actually settles a problem we call
“join sampling with predicates”, which captures subgraph
sampling as a (simple) special case. Details are available in
Appendix E.
• (Joins with random enumeration) Carmeli et al. [15] proposed

a variant of the join computation problem, where the objective
is to design an algorithm that, after an initial pre-processing,
can (i) produce a random permutation of the tuples in Join(Q),
and (ii) do so with a small delay Δ (the maximum time gap
between the reporting of two consecutive tuples in the per-
mutation). We obtain the first algorithm that, after an initial

8An occurrence is a subgraph of 𝐺 isomorphic to 𝑄 .

PODS ’23, June 18–23, 2023, Seattle, WA, USA

�̃� (IN)-time preprocessing, produces the whole permutation
in �̃� (IN𝜌∗) time (i.e., worst-case optimal up to a polyloga-
rithmic factor) with a delay �̃� (IN𝜌∗/max{1,OUT}) w.h.p..
Details are available in Appendix G.
• (Join Union Sampling) Let Q1, Q2, ..., Q𝑘 be joins with
var (Q1) = var (Q2) = ... = var (Q𝑘), where 𝑘 ≥ 2 is a con-
stant. We want to sample from

⋃𝑘
𝑖=1 Join(Q𝑖) uniformly at

random. Let IN be the total number of tuples in the input
relations of Q1, ..., Q𝑘 , OUT := |⋃𝑘

𝑖=1 Join(Q𝑖) |, and 𝜌∗ be
the maximum fractional edge covering number of the schema
graphs of Q1, ..., Q𝑘 . We obtain a structure of �̃� (IN) space
that can extract a uniform sample in �̃� (IN𝜌∗/max{1,OUT})
time w.h.p. and support an update in any input relation in
�̃� (1) time. Details are available in Appendix H.

7 POST-ACCEPTANCE REMARKS
In another paper [37] accepted to PODS’23, Kim et al. also devel-
oped a join sampling algorithm achieving performance guarantees
similar to ours. Their algorithm is elegant and approaches the prob-
lem from a perspective different from our work. In [37], Kim et al.
further discussed (i) some scenarios where better running time was
possible and (ii) how to estimate the join result size.

ACKNOWLEDGEMENTS
This work was supported in part by GRF projects 14207820, 14203421,
and 14222822 from HKRGC.

REFERENCES
[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current

clique algorithms are optimal, so is valiant’s parser. In Proceedings of Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 98–117,
2015.

[2] Amir Abboud, Loukas Georgiadis, Giuseppe F. Italiano, Robert Krauthgamer,
Nikos Parotsidis, Ohad Trabelsi, Przemyslaw Uznanski, and Daniel Wolleb-Graf.
Faster algorithms for all-pairs bounded min-cuts. In Proceedings of International
Colloquium on Automata, Languages and Programming (ICALP), pages 7:1–7:15,
2019.

[3] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ramaswamy.
Join synopses for approximate query answering. In Proceedings of ACM Manage-
ment of Data (SIGMOD), pages 275–286, 1999.

[4] Pankaj K. Agarwal. Range searching. In Handbook of Discrete and Computational
Geometry, 2nd Ed, pages 809–837. Chapman and Hall/CRC, 2004.

[5] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,
and Ion Stoica. BlinkDB: queries with bounded errors and bounded response
times on very large data. In Eurosys, pages 29–42, 2013.

[6] Kaleb Alway, Eric Blais, and Semih Salihoglu. Box covers and domain orderings
for beyond worst-case join processing. In Proceedings of International Conference
on Database Theory (ICDT), pages 3:1–3:23, 2021.

[7] Rasmus Resen Amossen and Rasmus Pagh. Faster join-projects and sparse matrix
multiplications. In Ronald Fagin, editor, Proceedings of International Conference
on Database Theory (ICDT), volume 361, pages 121–126, 2009.

[8] Albert Atserias, Martin Grohe, and Daniel Marx. Size bounds and query plans for
relational joins. SIAM Journal on Computing, 42(4):1737–1767, 2013.

[9] Jon Louis Bentley. Decomposable searching problems. Information Processing
Letters (IPL), 8(5):244–251, 1979.

[10] Thiago Bergamaschi, Monika Henzinger, Maximilian Probst Gutenberg, Vir-
ginia Vassilevska Williams, and Nicole Wein. New techniques and fine-grained
hardness for dynamic near-additive spanners. In Proceedings of the Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1836–1855, 2021.

[11] Karl Bringmann, Nick Fischer, and Marvin Kunnemann. A fine-grained analogue
of schaefer’s theorem in P: dichotomy of existsˆk-forall-quantified first-order
graph properties. In Computational Complexity Conference, pages 31:1–31:27,
2019.

[12] Karl Bringmann, Allan Gronlund, and Kasper Green Larsen. A dichotomy for reg-
ular expression membership testing. In Proceedings of Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 307–318, 2017.

[13] Karl Bringmann and Philip Wellnitz. Clique-based lower bounds for parsing
tree-adjoining grammars. In Proceedings of Annual Symposium on Combinatorial
Pattern Matching (CPM), pages 12:1–12:14, 2017.

[14] Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld,
and Mirek Riedewald. Tractable orders for direct access to ranked answers of
conjunctive queries. In Proceedings of ACM Symposium on Principles of Database
Systems (PODS), pages 325–341, 2021.

[15] Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Benny Kimelfeld, and Nicole
Schweikardt. Answering (unions of) conjunctive queries using random access and
random-order enumeration. In Proceedings of ACM Symposium on Principles of
Database Systems (PODS), pages 393–409, 2020.

[16] Timothy M. Chan. A (slightly) faster algorithm for klee’s measure problem.
Comput. Geom., 43(3):243–250, 2010.

[17] Yi-Jun Chang. Hardness of RNA folding problem with four symbols. Theor.
Comput. Sci., 757:11–26, 2019.

[18] Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. On random sampling
over joins. In Proceedings of ACM Management of Data (SIGMOD), pages 263–
274, 1999.

[19] Chandra Chekuri and Anand Rajaraman. Conjunctive query containment revisited.
Theoretical Computer Science, 239(2):211–229, 2000.

[20] Yu Chen and Ke Yi. Two-level sampling for join size estimation. In Proceedings
of ACM Management of Data (SIGMOD), pages 759–774, 2017.

[21] Yu Chen and Ke Yi. Random sampling and size estimation over cyclic joins.
In Proceedings of International Conference on Database Theory (ICDT), pages
7:1–7:18, 2020.

[22] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Second Edition. The MIT Press, 2001.

[23] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Compu-
tational Geometry: Algorithms and Applications. Springer-Verlag, 3rd edition,
2008.

[24] Rina Dechter and Judea Pearl. Tree-clustering schemes for constraint-processing.
In Proceedings of AAAI Conference on Artificial Intelligence (AAAI), pages 150–
154, 1988.

[25] Shaleen Deep, Xiao Hu, and Paraschos Koutris. Enumeration algorithms for
conjunctive queries with projection. In Proceedings of International Conference
on Database Theory (ICDT), volume 186, pages 14:1–14:17.

[26] Shaleen Deep, Xiao Hu, and Paraschos Koutris. Fast join project query evalua-
tion using matrix multiplication. In Proceedings of ACM Management of Data
(SIGMOD), pages 1213–1223, 2020.

[27] Shaleen Deep and Paraschos Koutris. Compressed representations of conjunctive
query results. In Proceedings of ACM Symposium on Principles of Database
Systems (PODS), pages 307–322, 2018.

[28] Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter
clique and dominating set. Theoretical Computer Science, 326(1-3):57–67, 2004.

[29] Hendrik Fichtenberger, Mingze Gao, and Pan Peng. Sampling arbitrary subgraphs
exactly uniformly in sublinear time. In Proceedings of International Colloquium
on Automata, Languages and Programming (ICALP), pages 45:1–45:13, 2020.

[30] Ehud Friedgut. Hypergraphs, entropy, and inequalities. Am. Math. Mon.,
111(9):749–760, 2004.

[31] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Robbers, marshals, and
guards: game theoretic and logical characterizations of hypertree width. Journal
of Computer and System Sciences (JCSS), 66(4):775–808, 2003.

[32] Etienne Grandjean and Louis Jachiet. Which arithmetic operations can be per-
formed in constant time in the RAM model with addition? CoRR, abs/2206.13851,
2022.

[33] Peter J. Haas and Joseph M. Hellerstein. Ripple joins for online aggregation. In
Proceedings of ACM Management of Data (SIGMOD), pages 287–298, 1999.

[34] Kathrin Hanauer, Monika Henzinger, and Qi Cheng Hua. Fully dynamic four-
vertex subgraph counting. In Symposium on Algorithmic Foundations of Dynamic
Networks (SAND), volume 221, pages 18:1–18:17, 2022.

[35] Ce Jin and Yinzhan Xu. Tight dynamic problem lower bounds from generalized
BMM and omv. In Proceedings of ACM Symposium on Theory of Computing
(STOC), 2022.

[36] Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Re, and Atri Rudra. Joins via
geometric resolutions: Worst case and beyond. ACM Transactions on Database
Systems (TODS), 41(4):22:1–22:45, 2016.

[37] Kyoungmin Kim, Jaehyun Ha, George Fletcher, and Wook-Shin Han. Guaran-
teeing the �̃�(AGM/OUT) runtime for uniform sampling and size estimation over
joins. In Proceedings of ACM Symposium on Principles of Database Systems
(PODS), 2023.

[38] Kyoungmin Kim, Hyeonji Kim, George Fletcher, and Wook-Shin Han. Combining
sampling and synopses with worst-case optimal runtime and quality guarantees
for graph pattern cardinality estimation. In Proceedings of ACM Management of
Data (SIGMOD), pages 964–976, 2021.

[39] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. Wander join: Online aggregation via
random walks. In Proceedings of ACM Management of Data (SIGMOD), pages
615–629, 2016.

PODS ’23, June 18–23, 2023, Seattle, WA, USA Shiyuan Deng, Shangqi Lu, and Yufei Tao

[40] Jason Li. Faster minimum k-cut of a simple graph. In Proceedings of Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 1056–1077,
2019.

[41] Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight
hardness for shortest cycles and paths in sparse graphs. In Proceedings of the
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1236–1252,
2018.

[42] Gonzalo Navarro, Juan L. Reutter, and Javiel Rojas-Ledesma. Optimal joins using
compact data structures. In Proceedings of International Conference on Database
Theory (ICDT), volume 155, pages 21:1–21:21, 2020.

[43] Jaroslav Nesetril and Svatopluk Poljak. On the complexity of the subgraph
problem. Commentationes Mathematicae Universitatis Carolinae, 26(2):415–419,
1985.

[44] Hung Q. Ngo, Dung T. Nguyen, Christopher Re, and Atri Rudra. Beyond worst-
case analysis for joins with minesweeper. In Proceedings of ACM Symposium on
Principles of Database Systems (PODS), pages 234–245, 2014.

[45] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-Case Optimal
Join Algorithms: [Extended Abstract]. In Proceedings of ACM Symposium on
Principles of Database Systems (PODS), pages 37–48, 2012.

[46] Hung Q. Ngo, Ely Porat, Christopher Re, and Atri Rudra. Worst-case optimal join
algorithms. Journal of the ACM (JACM), 65(3):16:1–16:40, 2018.

[47] Hung Q. Ngo, Christopher Re, and Atri Rudra. Skew strikes back: new develop-
ments in the theory of join algorithms. SIGMOD Rec., 42(4):5–16, 2013.

[48] Supriya Nirkhiwale, Alin Dobra, and Christopher M. Jermaine. A sampling
algebra for aggregate estimation. Proceedings of the VLDB Endowment (PVLDB),
6(14):1798–1809, 2013.

[49] Dan Olteanu and Jakub Zavodny. Size bounds for factorised representations of
query results. ACM Transactions on Database Systems (TODS), 40(1):2:1–2:44,
2015.

[50] Rodrygo L. T. Santos, Craig MacDonald, and Iadh Ounis. Search result diversifi-
cation. Found. Trends Inf. Retr., 9(1):1–90, 2015.

[51] Ali Mohammadi Shanghooshabad, Meghdad Kurmanji, Qingzhi Ma, Michael
Shekelyan, Mehrdad Almasi, and Peter Triantafillou. Pgmjoins: Random join
sampling with graphical models. In Proceedings of ACM Management of Data
(SIGMOD), pages 1610–1622, 2021.

[52] Yufei Tao and Ke Yi. Intersection joins under updates. Journal of Computer and
System Sciences (JCSS), 124:41–64, 2022.

[53] Virginia Vassilevska. Efficient algorithms for clique problems. Information
Processing Letters (IPL), 109(4):254–257, 2009.

[54] Todd L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In
Proceedings of International Conference on Database Theory (ICDT), pages
96–106, 2014.

[55] David Vengerov, Andre Cavalheiro Menck, Mohamed Zaït, and Sunil Chakkap-
pen. Join size estimation subject to filter conditions. Proceedings of the VLDB
Endowment (PVLDB), 8(12):1530–1541, 2015.

[56] Mihalis Yannakakis. Algorithms for acyclic database schemes. In Very Large
Data Bases, 7th International Conference, September 9-11, 1981, Cannes, France,
Proceedings, pages 82–94, 1981.

[57] Feng Yu, Wen-Chi Hou, Cheng Luo, Dunren Che, and Mengxia Zhu. CS2: a new
database synopsis for query estimation. In Proceedings of ACM Management of
Data (SIGMOD), pages 469–480, 2013.

[58] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. Random
sampling over joins revisited. In Proceedings of ACM Management of Data
(SIGMOD), pages 1525–1539, 2018.

[59] Zhuoyue Zhao, Feifei Li, and Yuxi Liu. Efficient join synopsis maintenance for
data warehouse. In Proceedings of ACM Management of Data (SIGMOD), pages
2027–2042, 2020.

APPENDIX
A PROOF OF LEMMA 3
We first review Friedgut’s inequality (sometimes called the general-
ized Höder’s inequality). Fix some integers 𝑝 and 𝑞 at least 1. Let
{𝑎𝑖, 𝑗 | 𝑖 ∈ [1, 𝑝], 𝑗 ∈ [1, 𝑞]} be a set of non-negative real values.
Also, let {𝑏𝑖 | 𝑖 ∈ [1, 𝑞]} be another set of non-negative real values
satisfying

∑𝑞

𝑘=1 𝑏𝑘 ≥ 1. Assuming 00 = 0, Friedgut’s inequality [30]
states

𝑝∑︁
𝑖=1

𝑞∏
𝑗=1

𝑎
𝑏 𝑗

𝑖, 𝑗
≤

𝑞∏
𝑗=1

(
𝑝∑︁
𝑖=1

𝑎𝑖, 𝑗

)𝑏 𝑗

. (10)

Returning to the context of Lemma 3, recall that we have already
fixed an integer 𝑖 ∈ [1, 𝑑]: this is the “𝑖” used to create 𝐵1, 𝐵2, ..., 𝐵𝑠

in (8). Define E𝑖 = {𝑒 ∈ E | 𝑋𝑖 ∈ 𝑒}, the set of edges in the schema
graph of Q that cover attribute 𝑋𝑖 . For each 𝑗 ∈ [1, 𝑠], we have

AGM𝑊 (𝐵 𝑗) =
∏
𝑒∈E
|𝑅𝑒 (𝐵 𝑗) |𝑊 (𝑒) (see (7))

=
∏

𝑒∈E\E𝑖
|𝑅𝑒 (𝐵 𝑗) |𝑊 (𝑒) ·

∏
𝑒∈E𝑖
|𝑅𝑒 (𝐵 𝑗) |𝑊 (𝑒)

=
∏

𝑒∈E\E𝑖
|𝑅𝑒 (𝐵) |𝑊 (𝑒) ·

∏
𝑒∈E𝑖
|𝑅𝑒 (𝐵 𝑗) |𝑊 (𝑒)

where the last equality used the fact 𝑅𝑒 (𝐵 𝑗) = 𝑅𝑒 (𝐵) for 𝑒 ∈ E \ E𝑖 ,
which holds because 𝐵 and 𝐵 𝑗 have the same projections on all
attributes other than 𝑋𝑖 , but 𝑋𝑖 ∉ 𝑒. We can now derive

𝑠∑︁
𝑗=1

AGM𝑊 (𝐵 𝑗)

=

𝑠∑︁
𝑗=1

©«
∏

𝑒∈E\E𝑖
|𝑅𝑒 (𝐵) |𝑊 (𝑒) ·

∏
𝑒∈E𝑖
|𝑅𝑒 (𝐵 𝑗) |𝑊 (𝑒)ª®¬

=
∏

𝑒∈E\E𝑖
|𝑅𝑒 (𝐵) |𝑊 (𝑒) ·

𝑠∑︁
𝑗=1

©«
∏
𝑒∈E𝑖
|𝑅𝑒 (𝐵 𝑗) |𝑊 (𝑒)ª®¬

≤
∏

𝑒∈E\E𝑖
|𝑅𝑒 (𝐵) |𝑊 (𝑒) ·

∏
𝑒∈E𝑖

©«
𝑠∑︁
𝑗=1
|𝑅𝑒 (𝐵 𝑗) |

ª®¬
𝑊 (𝑒)

(applying (10), noticing that
∑︁
𝑒∈E 𝑗

𝑊 (𝑒) ≥ 1)

=
∏

𝑒∈E\E𝑖
|𝑅𝑒 (𝐵) |𝑊 (𝑒) ·

∏
𝑒∈E𝑖
|𝑅𝑒 (𝐵) |𝑊 (𝑒)

(because
𝑠⋃
𝑗=1

𝐵 𝑗 = 𝐵 and 𝐵1, ..., 𝐵𝑠 are disjoint)

= AGM𝑊 (𝐵).

B ORACLE IMPLEMENTATION
The count oracle essentially deals with a problem known as orthogo-
nal range counting. In that problem, the input is a set 𝑃 of 𝑛 points in
𝑑-dimensional space R𝑑 for some constant 𝑑 . Given an axis-parallel
rectangle 𝑞 in R𝑑 , a query returns |𝑃 ∩ 𝑞 |, namely, the number of
points in 𝑃 that are covered by 𝑞. The goal is to store 𝑃 in a data
structure to answer queries efficiently. We refer the reader to [4] for
a survey on the known data structures solving this problem. Among
them is the range tree [9, 23], which consumes 𝑂 (𝑛 log𝑑−1 𝑛) space,
answers a query in 𝑂 (log𝑑 𝑛) time, and supports a point insertion
and deletion in 𝑃 using 𝑂 (log𝑑 𝑛) time. It serves as a count oracle
meeting our requirements.

Before implementing the median oracle, let us look at an alter-
native problem first. The input is a set 𝑆 of 𝑛 real values. Given
an interval 𝑞 in R and an integer 𝑘 ≥ 1, a query returns the 𝑘-th
smallest integer in 𝑆 ∩𝑞 (or returns nothing in the special case where
𝑘 > |𝑆 ∩ 𝑞 |). The goal is to store 𝑆 in a data structure to answer
queries efficiently. We can create a binary search tree (BST) on 𝑆

and keep, at each node 𝑣 in the tree, the number of descendant nodes
of 𝑣 . The tree occupies 𝑂 (𝑛) space, answers a query in 𝑂 (log𝑛)
time (see Chapter 14 “Augmenting Data Structures” of [22]), and

PODS ’23, June 18–23, 2023, Seattle, WA, USA

supports an insertion or deletion in 𝑆 using 𝑂 (log𝑛) time. The same
structure can also find the size of 𝑆 ∩ 𝑞 in 𝑂 (log𝑛) time (see the
above chapter of [22] again). It thus follows that we can report the
median value in 𝑆 ∩ 𝑞 in 𝑂 (log𝑛) time.

To implement a median oracle, for every attribute 𝑋 ∈ var (𝑄),
we maintain the aforementioned (slightly-augmented) BST on the
set 𝑆 of 𝑋 -values that appear in at least one relation in Q. The
structure occupies �̃� (IN) space and, given a box 𝐵, finds the median
of actdom(𝑋, 𝐵)— which is the median of the values of 𝑆 covered
by the interval 𝐵(𝑋) — in 𝑂 (log IN) time. It is straightforward to
maintain the tree in 𝑂 (log IN) time per update.

C PROOF OF LEMMA 6
Suppose that, given a join Q, we can build a combinatorial structure
Υ in �̃� (IN + IN𝜌∗−𝜖) time that can extract a uniform sample from
Join(Q) in �̃� (IN𝜌∗−𝜖/OUT) time when OUT ∈ [1, IN𝜖]. Next, we
will show how to use Υ to compute Join(Q) in �̃� (IN𝜌∗−𝜖) time when
OUT ≤ IN𝜖 , thereby establishing the lemma.

Let us first assume that we know, by magic, the value OUT. If
OUT = 0, Join(Q) is empty and there is nothing to do. Otherwise, we
deploy Υ to extract 𝑠 := 𝑐 · OUT · ln IN samples from Join(Q) where
𝑐 is a sufficiently large constant. W.h.p., every tuple 𝒖 ∈ Join(Q)
must have been sampled at least once. Indeed, the probability for
𝒖 to have been missed by all those 𝑠 samples is (1 − 1

OUT)
𝑠 , which

is at most 𝑒−𝑠/OUT = 1/IN𝑐 . It thus holds with probability at least
1 − OUT/IN𝑐 ≥ 1 − IN𝜌∗/IN𝑐 = 1 − 1/IN𝑐−𝜌∗ that all the tuples in
Join(Q) are sampled. The total running time is𝑂 (𝑠 ·IN𝜌∗−𝜖/OUT) =
�̃� (IN𝜌∗−𝜖).

The rest of the proof explains how to remove the magic assump-
tion. Instead of the exact OUT, we aim to obtain an over-estimate
ˆOUT satisfying OUT ≤ ˆOUT ≤ 2OUT. By replacing OUT with
ˆOUT in the above, we can only decrease the algorithm’s failure

probability, while keeping the execution time at the same order. In
[21], Chen and Yi described a method for estimating OUT, but their
method requires special knowledge of the sampling algorithm of Υ.9

Our method, presented below, works for any sampling algorithm.
We start by using the sample algorithm of Υ to find out if OUT = 0.

Recall that, if OUT ≥ 1, the algorithm is required to return a sample
in �̃� (IN𝜌∗−𝜖) time w.h.p. (we can assume OUT ≤ IN𝜖 because
otherwise our 𝜖-output sensitive algorithm does not need to guarantee
anything). Motivated by this, we allow the algorithm to execute
for �̃� (IN𝜌∗−𝜖) time and then manually terminate it if it has not
finished yet. If a sample has been returned, then obviously OUT > 0;
otherwise, we declare Join(Q) = ∅.

The subsequent discussion concentrates on the scenario of OUT >

0. We use Υ to extract samples continuously and, for each sample,
check if it has been seen before (this can be done in �̃� (1) time by
maintaining a dictionary-search structure, e.g., the BST, on the seen
samples). The extraction stops as soon as Υ churns out Δ := 𝑐′ log IN
seen samples in a row, where 𝑐′ is a sufficiently large constant. At
this moment, count the number 𝑡 of distinct samples already obtained
and finalize our estimate ˆOUT := 2𝑡 .

9Specifically, Chen and Yi’s method assumes that the sampling algorithm of Υ works by
repeatedly making trials, each of which either declares “failure” or produces a sample.
The failure probability must be available for their method to work.

It is easy to analyze the running time. Until termination, the
algorithm finds a new tuple in Join(Q) after drawing at most Δ
samples in �̃� (IN𝜌∗−𝜖/OUT) time. As Join(Q) has OUT tuples, the
total execution time is no more than �̃� (IN𝜌∗−𝜖).

To complete the whole proof, we argue that 𝑡 ≥ OUT/2 w.h.p.,
which means ˆOUT ∈ [OUT, 2OUT] w.h.p., as desired. Fix an arbi-
trary integer 𝜏 ∈ [0,OUT/2). For the algorithm to terminate with
𝑡 = 𝜏 , Υ needs to output Δ seen samples in a row when Join(Q)
still has at least OUT − 𝜏 ≥ OUT/2 tuples never sampled. As each
sample is uniformly random, it has at least 1/2 probability to hit
an unseen tuple. The probability of fetching Δ seen samples contin-
uously is at most (1/2)Δ = 1/IN𝑐′ , which is thus an upper bound
for the algorithm to terminate with 𝑡 = 𝜏 . Accounting for all the
possible 𝜏 values, we can conclude that the algorithm finishes with
a 𝑡 ∈ [0,OUT/2) with probability 𝑂 (OUT/IN𝑐′) = 𝑂 (1/IN𝑐′−𝜌∗).
Therefore, 𝑡 has probability 1 −𝑂 (1/IN𝑐′−𝜌∗) to be at least OUT/2.

D PROOF OF LEMMA 7
As before, let A be the given combinatorial 𝜖-output sensitive al-
gorithm. Denote by A′ the sampling algorithm of our structure in
Theorem 5. To detect whether Join(Q) is empty, we first build our
structure on Q in �̃� (IN) time by inserting every tuple of the input
relations one by one. Then, runA andA′ in an interleaving manner,
that is, run a step (of constant time) of A, followed by a step of A′,
another step of A, then a step of A′, and so on. The interleaving
process stops as soon as either algorithm finishes. At that moment,
check whether A and A′ have found any tuple of Join(Q). If so,
obviously Join(Q) is not empty; otherwise, declare Join(Q) empty.

Let us represent the above emptiness-detection algorithm asAemp.
Next, we will prove thatAemp, w.h.p., correctly decides if Join(Q) =
∅ and runs in �̃� (IN + IN𝜌∗−𝜖) time. Our analysis is through a case-
by-case discussion on the value of OUT.

• If OUT = 0, Aemp always returns “Join(Q) empty”. Be-
causeA is 𝜖-output sensitive, it terminates in �̃� (IN𝜌∗−𝜖) time
w.h.p.. The cost of Aemp is thus bounded by �̃� (IN + IN𝜌∗−𝜖)
w.h.p..
• Consider now 0 < OUT ≤ IN𝜖 . Being 𝜖-output sensitive, A

must report the full Join(Q) in �̃� (IN𝜌∗−𝜖) time w.h.p.. Hence,
Aemp finds a tuple of Join(Q) in �̃� (IN + IN𝜌∗−𝜖) time w.h.p..
• The final case is OUT > IN𝜖 . By Theorem 5, A′ must return

a join sample of Q in �̃� (IN𝜌∗−𝜖) time w.h.p..Aemp thus finds
a tuple of Join(Q) in �̃� (IN + IN𝜌∗−𝜖) time w.h.p..

E SUBGRAPH SAMPLING
Before discussing subgraph sampling, we first extend Theorem 5 to
a scenario we call join sampling with predicates, where sampling is
performed on only a subset of the join result. Let Q be a join defined
in Section 2.1. Given a boolean predicate 𝜎 , define Join(𝜎,Q) :=
{𝒖 ∈ Join(Q) | 𝒖 satisfies 𝜎}, i.e., the subset of tuples in Join(Q)
passing the filtering condition 𝜎 . A 𝜎-join sample of Q is a tuple
taken uniformly at random from Join(𝜎,Q). We want to create an
index structure on Q to allow fast extraction of 𝜎-join samples.

Interestingly, our structure in Theorem 5 can be deployed directly
to draw a 𝜎-join sample, even if the predicate 𝜎 is supplied at run

PODS ’23, June 18–23, 2023, Seattle, WA, USA Shiyuan Deng, Shangqi Lu, and Yufei Tao

time. For this purpose, simply apply the sample algorithm in Fig-
ure 3. If sample declares “failure”, we declare the same. Otherwise,
suppose that sample returns a sample 𝒖 ∈ Join(Q), which we out-
put only if 𝒖 satisfies 𝜎 . Otherwise (𝒖 violates 𝜎), we again declare
“failure”. The above algorithm (for drawing a 𝜎-join sample) will be
referred to as 𝜎-sample henceforth.

Recall that sample draws 𝒖 from Join(Q) uniformly at random.
Thus, every tuple in Join(𝜎,Q), which is a subset of Join(Q), has
the same chance to be taken as 𝒖. Hence, 𝜎-sample, if it suc-
ceeds (i.e., outputting a tuple), returns a 𝜎-join sample of Q. To
analyze its success probability, let OUT𝜎 := |Join(𝜎,Q)|. As shown
in Section 4.2, sample outputs a tuple of Join(Q) with probability

OUT
AGM𝑊 (Q) , which tells us that 𝜎-sample succeeds with probabil-

ity OUT
AGM𝑊 (Q) ·

OUT𝜎
OUT =

OUT𝜎
AGM𝑊 (Q) . It thus follows that we can,

by repeating the algorithm until a success, draw a 𝜎-join sample
of Q in �̃� (AGM𝑊 (Q)/max{1,OUT𝜎 }) time, which can be made
�̃� (IN𝜌∗/max{1,OUT𝜎 }) by choosing the fractional edge covering
𝑊 optimally, where 𝜌∗ is the fractional edge covering number of the
schema graph of Q.

We are ready to solve the subgraph sampling problem. Recall that
the goal is to preprocess an undirected graph 𝐺 := (𝑉 , 𝐸) such that,
given a constant-size pattern graph 𝑄 , we can uniformly sample an
occurrence of 𝑄 from 𝐺 . Let X be the set of vertices in 𝑄 , and E
be the set of edges in 𝑄 . It is worth reminding the reader that every
edge in 𝐺 and 𝑄 contains exactly two vertices.

We create a join Q with |E | relations as follows. For each edge
𝑒 = {𝑋,𝑌 } in 𝑄 (where 𝑋 and 𝑌 are vertices in 𝑄), create a relation
𝑅𝑒 with schema var (𝑅𝑒) = {𝑋,𝑌 }. The size of 𝑅𝑒 is 2|𝐸 |, i.e., twice
the number of edges in 𝐺 . Specifically, for every edge {𝑥,𝑦} in 𝐺

(where 𝑥 and 𝑦 are vertices in 𝐺), we create two tuples in 𝑅𝑒 : tuple
𝒖1 satisfying 𝒖1 (𝑋) = 𝑥 and 𝒖1 (𝑌) = 𝑦, and tuple 𝒖2 satisfying
𝒖2 (𝑋) = 𝑦 and 𝒖2 (𝑌) = 𝑥 . This completes the construction of Q,
which has input size IN = |E | · (2|𝐸 |) = 𝑂 (|𝐸 |).

Every tuple 𝒖 in the result Join(Q) of Q can be thought of as
mapping each edge {𝑋,𝑌 } in 𝑄 to an edge {𝒖 (𝑋), 𝒖 (𝑌)} in 𝐺 . If
the set of (mapped) edges {{𝒖 (𝑋), 𝒖 (𝑌)} | {𝑋,𝑌 } ∈ E} induces an
occurrence of 𝑄 , we say that 𝒖 describes the occurrence.

The following are two (folklore) facts about relationships between
the tuples in Join(Q) and the occurrences of 𝑄 .
• Fact 1: Every occurrence of 𝑄 is described by the same num-

ber 𝑐 of tuples in Join(Q), where 𝑐 ≥ 1 is a constant. For
example, consider𝑄 to be a triangle with vertices 𝑋,𝑌 , and 𝑍 .
An occurrence of 𝑄 , which is a triangle with vertices 𝑥,𝑦, and
𝑧 in𝐺 , is described by the tuple 𝒖 ∈ Join(Q) where 𝒖 (𝑋) = 𝑥 ,
𝒖 (𝑌) = 𝑦, and 𝒖 (𝑍) = 𝑧. It is easy to see that the triangle is
described by six tuples of Join(Q) in total, and six is exactly
the number of automorhisms of 𝑄 .
• Fact 2: It is possible for Join(Q) to contain tuples that do not

describe any occurrence of 𝑄 . For example, consider 𝑄 to be
a 4-cycle with vertices 𝑋1, 𝑋2, 𝑋3, and 𝑋4. The tuple 𝒖 with
(𝒖 (𝑋1), 𝒖 (𝑋2), 𝒖 (𝑋3), 𝒖 (𝑋4)) = (𝑥,𝑦, 𝑥,𝑦), where {𝑥,𝑦} is
an edge in 𝐺 , belongs to Join(Q) but does not describe any
occurrence of 𝑄 .

To sample occurrences, we create a structure of Theorem 5 on Q,
which occupies �̃� (|𝐸 |) space and can be easily maintained in �̃� (1)
time per edge insertion and deletion. To draw a sample, we apply the

𝜎-sample algorithm by setting the predicate 𝜎 to “tuple 𝒖 should
describe an occurrence of 𝑄”. The predicate can be evaluated in
constant time. By Fact 1, the value of OUT𝜎 equals 𝑐 · OCC, where
OCC is the number of occurrences of 𝑄 in 𝐺 . Our earlier discussion
indicates that the sample time is �̃� (|𝐸 |𝜌∗/max{1,OCC}).

F 𝝐-OUTPUT SENSITIVITY BREAKS
COMBINATORIAL 𝒌-CLIQUE HYPOTHESIS

By Lemma 7, the existence of an 𝜖-output sensitive algorithm implies
a combinatorial algorithm Aemp that, given any join Q, can decide
whether Join(Q) = ∅ in �̃� (IN + IN𝜌∗−𝜖) time w.h.p.. Next, we show
how to break the combinatorial 𝑘-clique hypothesis with Aemp for
any constant 𝑘 ≥ 3.

Let 𝐺 := (𝑉 , 𝐸) be a simple undirected graph. In Appendix E, we
presented a strategy to convert subgraph sampling to join sampling
for any pattern graph 𝑄 . Here, we apply the same ideas to construct
a join Q from 𝐺 , setting 𝑄 to 𝑘-clique. As before, for each edge
𝑒 = {𝑋,𝑌 } in 𝑄 , create a relation 𝑅𝑒 with schema var (𝑅𝑒) = {𝑋,𝑌 }.
For every edge {𝑥,𝑦} in 𝐺 , relation 𝑅𝑒 contains two tuples: tuple
𝒖1 with 𝒖1 (𝑋) = 𝑥 and 𝒖1 (𝑌) = 𝑦, and tuple 𝒖2 with 𝒖2 (𝑋) =
𝑦 and 𝒖2 (𝑌) = 𝑥 . Recall that the conversion has two properties,
presented as Facts 1 and 2 in Appendix E. Crucially, Fact 2 can now
be strengthened into the claim below (for 𝑄 = 𝑘-clique):

Every tuple in Join(Q) describes an occurrence of 𝑄 in 𝐺 .

To explain why, consider any tuple 𝒖 ∈ Join(Q). For each edge
𝑒 = {𝑋,𝑌 } in 𝑄 , we know that {𝒖 (𝑋), 𝒖 (𝑌)} is in 𝑅𝑒 and, hence, is
an edge in 𝐺 . It thus follows that 𝐺 has an edge between vertices
𝒖 (𝑋) and 𝒖 (𝑌) for any two distinct vertices 𝑋 and 𝑌 in𝑄 . Therefore,
𝒖 describes a 𝑘-clique occurrence in 𝐺 .

Combined with Fact 1, the above claim indicates that 𝐺 has a
𝑘-clique if and only if Join(Q) is non-empty. Therefore, we can
apply Aemp to detect the emptiness of Join(Q) and then decide on
the 𝑘-clique presence in 𝐺 . To analyze running time, we note that
the fractional edge covering number of 𝑘-clique is 𝑘/2, as is also
the fractional edge covering number 𝜌∗ of the schema graph 𝑄 of Q.
Therefore, the algorithm described earlier runs in �̃� (|𝐸 | + |𝐸 |

𝑘
2 −𝜖)

time. Applying the trivial fact |𝐸 | ≤ |𝑉 |2, we can relax the time
complexity to �̃� (|𝑉 |2+|𝑉 |𝑘−2𝜖), which is �̃� (|𝑉 |𝑘−2𝜖) because 𝑘 ≥ 3
and 𝜖 < 1/2, thus breaking the combinatorial 𝑘-clique hypothesis.

G JOINS WITH RANDOM ENUMERATION
Our solution to this problem combines ideas in Appendix C and a
technique in [52] that adapts a delay-oblivious reporting algorithm
for small-delay enumeration.

First, create a structure of Theorem 5 on the given join Q in
�̃� (IN) time. Then, we find out whether OUT = 0. For this purpose,
run the sampling algorithm of Theorem 5 — denoted as A hence-
forth — to see if it returns a sample. If so, A must have done so
in �̃� (IN𝜌∗/OUT) time w.h.p.; obviously, OUT > 0 in this scenario.
Otherwise, OUT = 0 w.h.p., in which case the execution time of A
is �̃� (IN𝜌∗), and we have already solved the join.

The subsequent discussion focuses on OUT > 0. We carry out
two steps in the same fashion as in Appendix C.

PODS ’23, June 18–23, 2023, Seattle, WA, USA

• The first step obtains an estimate ˆOUT ∈ [OUT, 2OUT] and,
in the meantime, reports at least OUT/2 tuples in Join(Q).
The algorithm is the same as described before: keep sampling
with A until seeing Δ := 𝑂 (log IN) seen tuples in a row. The

cost of the step is �̃� (IN𝜌∗

OUT · OUT · Δ) = �̃� (IN𝜌∗).
• The second step reports the remaining tuples of Join(Q) that

have not been found yet. As in Appendix C, we use A to
extract 𝑠 := 𝑂 (ˆOUT · ln IN) samples and output a sample only
if it has never been reported before. The cost of the step is

�̃� (IN𝜌∗

OUT · 𝑠) = �̃� (IN𝜌∗).
It is immediate from the analysis in Appendix C that the above

two-step algorithm w.h.p. manages to output the entire Join(Q) in a
random permutation. However, it is not designed to achieve a small
delay. In fact, Step 1 is fine: it enumerates at least OUT/2 result

tuples with a delay �̃� (IN𝜌∗

OUT ·Δ) = �̃� (IN𝜌∗/OUT). The trouble lies in
Step 2 where we may fetch a large number of samples before hitting
an unseen tuple.

To eliminate the issue, we resort to a technique of Tao and Yi [52].
They defined a join reporting algorithm A′ to be 𝛼-aggressive if,
after 𝑡 running time10 for any integer 𝑡 ≥ 1,A′ must have discovered
at least ⌊𝑡/𝛼⌋ distinct result tuples. They showed that any such A′
can be converted into an algorithm that reports all the result tuples
with a delay 𝑂 (𝛼). Furthermore, the converted algorithm outputs the
result tuples in the same order as A′ does.

We claim that the two-step algorithm explained earlier is 𝛼-
aggressive with

𝛼 = 𝛽 · Δ · IN
𝜌∗

OUT
(11)

where 𝛽 is a sufficiently large �̃� (1) factor. Thus, the method of
[52] turns our algorithm into one that, w.h.p., outputs a random
permutation of Join(Q) with delay �̃� (IN𝜌∗/OUT).

To understand the claim, first note that Step 1 is �̃� (IN𝜌∗/OUT)-
aggressive because, as mentioned, it ensures a delay �̃� (IN𝜌∗/OUT).
Consider any moment during Step 2; let 𝑡 be the running time from
the start of Step 1 till that moment. As 𝑡 = �̃� (IN𝜌∗), we can raise 𝛽

to some �̃� (1) factor to make sure

⌊𝑡/𝛼⌋ ≤ ⌊�̃� (IN𝜌∗)/𝛼⌋ = ⌊OUT · �̃� (1)/𝛽⌋ ≤ OUT/2

with the value 𝛼 calculated in (11). To argue that our algorithm is
𝛼-aggressive, it suffices to show that at least OUT/2 distinct result
tuples must have been found at any moment during Step 2. This is
true because Step 1 has output at least OUT/2 tuples.

H JOIN UNION SAMPLING
As before, let Q1,Q2, ...,Q𝑘 be the joins given (where constant
𝑘 ≥ 2), IN be the total input size of all these joins, and OUT :=
|⋃𝑘

𝑖=1 Join(Q𝑖) |. For each 𝑖 ∈ [1, 𝑘], define

• G𝑖 := (X𝑖 , E𝑖) as the schema graph of Q𝑖 ;
• 𝜌∗

𝑖
as the fractional edge covering number of G𝑖 ;

• 𝑊𝑖 as an optimal fractional edge covering of G𝑖 , namely,
𝜌∗
𝑖
=

∑
𝑒∈E𝑖 𝑊𝑖 (𝑒).

10Recall that “running time” in the RAM model is defined as the number of atomic
operations, each of which performs constant-time work such as comparison, register
assignment, arithmetic computation, memory access, etc.

Therefore, 𝜌∗ = max𝑘
𝑖=1 𝜌

∗
𝑖

. Introduce

AGMSUM :=
𝑘∑︁
𝑖=1

AGM𝑊𝑖
(Q𝑖) .

It is easy to see that AGMSUM = 𝑂 (IN𝜌∗).
A tuple 𝒖 ∈ ⋃𝑘

𝑖=1 Join(Q𝑖) can be in the result of more than one
join among Q1, ...,Q𝑘 . For each 𝒖, we define its owner as the Q𝑖
with the smallest 𝑖 ∈ [1, 𝑘] satisfying 𝒖 ∈ Join(Q𝑖). Once 𝒖 is given,
its owner can be easily determined in 𝑂 (𝑘) = 𝑂 (1) time.

For each 𝑖 ∈ [1, 𝑘], we build a structure Υ𝑖 of Theorem 5 on Q𝑖 ,
under the fractional edge covering𝑊𝑖 . Since 𝑘 is a constant, the space
consumption of all the structures is �̃� (IN), and it is straightforward
to handle an update in any input relation using �̃� (1) time.

The rest of the section will explain how to extract a sample from⋃𝑘
𝑖=1 Join(Q𝑖). Our algorithm, named union-sample, combines

our sample algorithm in Figure 3 with ideas from [15]. Algorithm
union-sample has the properties below:
• It finishes in �̃� (1) time;
• It declares “failure” with probability 1 − OUT/AGMSUM.
• If not declaring failure, it outputs a tuple 𝒖 from

⋃𝑘
𝑖=1 Join(Q𝑖)

uniformly at random.
The above properties allow us to extract a sample from

⋃𝑘
𝑖=1 Join(Q𝑖)

w.h.p. in time �̃� (AGMSUM/max{1,OUT}) = �̃� (IN𝜌∗/max{1,OUT}).
Next, we present the details of union-sample. It starts by

generating a random integer 𝑖 ∈ [1, 𝑘] such that

Pr[𝑖 = 𝑗] = AGM𝑊𝑗
(Q 𝑗)/AGMSUM

holds for each 𝑗 ∈ [1, 𝑘]. The generation takes �̃� (1) time, thanks
to Proposition 1. Then, the algorithm instructs Υ𝑖 to execute the
sample algorithm (Figure 3) only once in �̃� (1) time. If sample
declares “failure”, union-sample does the same. Otherwise, sample
has obtained a tuple 𝒖 ∈ Join(Q𝑖). Now, check in constant time
whether Join(Q𝑖) is the owner of 𝒖. If so, union-sample outputs
𝒖 as a sample of

⋃𝑘
𝑖=1 Join(Q𝑖); otherwise, it declares “failure”.

To analyze the algorithm, consider any tuple 𝒖 ∈ ⋃𝑘
𝑖=1 Join(Q𝑖).

Assume, w.l.o.g., that Q𝑖∗ is the owner of 𝒖 for some 𝑖∗ ∈ [1, 𝑘].
As union-sample can return 𝒖 only when the random variable 𝑖
selected in the beginning equals 𝑖∗, the probability of outputting 𝒖
equals
AGM𝑊𝑖∗ (Q𝑖∗)
AGMSUM

· Pr[the sample algorithm of Υ𝑖∗ samples 𝒖] . (12)

As explained in Section 4.2, Υ𝑖∗ samples 𝒖 with probability 1
AGM𝑊𝑖∗ (𝑄𝑖∗) .

Therefore, (12) can be simplified into
AGM𝑊𝑖∗ (Q𝑖∗)
AGMSUM

· 1
AGM𝑊𝑖∗ (Q𝑖∗)

=
1

AGMSUM
.

We thus conclude that union-sample returns a uniformly ran-
dom tuple of

⋃𝑘
𝑖=1 Join(Q𝑖) with probability OUT/AGMSUM, and

declares “failure” with probability 1 − OUT/AGMSUM.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The Problem of Join Sampling
	2.2 The AGM Bound
	2.3 Algorithms on Join Processing

	3 The AGM Split Theorem
	4 Join Sampling
	4.1 The Join Box-Tree
	4.2 The Sampling Algorithm
	4.3 Oracles

	5 Hardness of Join Sampling and Output-Sensitive Join Algorithms
	6 Applications
	7 Post-Acceptance Remarks
	References
	A Proof of Lemma 3
	B Oracle Implementation
	C Proof of Lemma 6
	D Proof of Lemma 7
	E Subgraph Sampling
	F normalnormal-Output Sensitivity Breaks Combinatorial normalnormalk-Clique hypothesis
	G Joins with Random Enumeration
	H Join Union Sampling

